
z/OS Communications Server
2.5

IP IMS Sockets Guide

IBM

SC27-3653-50

Note:

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 303.

This edition applies to Version 2 Release 5 of z/OS® (5650-ZOS), and to subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-09-11
© Copyright International Business Machines Corporation 2000, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xiii

About this document.. xvii
Who should read this document.. xvii
How this document is organized... xviii
How to use this document...xviii

How to contact IBM service... xviii
Conventions and terminology that are used in this information.. xviii
How to read a syntax diagram...xix
Prerequisite and related information... xxii

Summary of changes for IP IMS Sockets Guide..xxvii
Changes made in z/OS Communications Server Version 2 Release 5.. xxvii
Changes made in z/OS Communications Server Version 2 Release 4.. xxvii
Changes made in z/OS Communications Server Version 2 Release 3.. xxvii

Chapter 1. Using TCP/IP in the IMS environment.. 1
The role of IMS TCP/IP...1
IMS TCP/IP feature components... 2

The IMS Listener...2
The IMS Assist module...2
The MVS TCP/IP socket application programming interface (Sockets Extended)............................... 2

Chapter 2. IMS TCP/IP...3
Using IMS with SNA or TCP/IP...3
TCP/IP internets...3

Mainframe interactive processing..4
Client/server processing.. 4
TCP, UDP, and IP... 4
The socket API..5

Programming with sockets.. 5
Socket types... 5
Addressing TCP/IP hosts..6

A typical client/server program flow chart..7
Concurrent and iterative servers..8

The basic socket calls.. 9
Server TCP/IP calls.. 10

Server SOCKET call...10
Server BIND call... 11
Server LISTEN call..11
Server ACCEPT call...11
Server GIVESOCKET and TAKESOCKET calls.. 11
Server READ and WRITE calls..12

Client TCP/IP calls... 12
Client SOCKET call..12
Client CONNECT call...12
Client Read/Write calls — the conversation...12

 iii

Client CLOSE call.. 13
Other socket calls.. 13

The SELECT call.. 13
IOCTL and FCNTL calls...15
GIVESOCKET and TAKESOCKET calls..15

What you need to run IMS TCP/IP...16
A summary of what IMS TCP/IP provides... 17

Chapter 3. Principles of operation of the Listener and the Assist module............... 19
Overview of the Listener and the Assist module...19

The role of the IMS Listener...19
The role of the IMS Assist module...19

Client/server logic flow..20
How the connection is established..20
How the server exchanges data with the client...22
How the IMS Listener manages multiple connection requests.. 25
Use of the IMS message queue... 26
Call sequence for the IMS Listener..26
Application design considerations...27

Restrictions for operation of the Listener and the Assist module.. 28

Chapter 4. How to write an IMS TCP/IP client program... 29
General client program logic flow... 29
Explicit-mode client program logic flow... 29

Explicit-mode client call sequence..29
Explicit-mode application data.. 30

Implicit-mode client logic flow..30
Implicit-mode client call sequence... 31
Implicit-mode application data stream...32
Implicit-mode application data... 32

IMS TCP/IP message segment formats.. 33
Transaction-request message segment (client to Listener)... 33
Request-status message segment.. 34
Complete-status message segment..35
End-of-message segment (EOM)...35

PL/I coding... 35

Chapter 5. How to write an IMS TCP/IP server program.. 37
General server program logic flow.. 37
Explicit-mode server program logic flow.. 37

Explicit-mode call sequence..37
Explicit-mode application data.. 38
Transaction-initiation message segment.. 38
Program design considerations... 39
I/O PCB explicit-mode server.. 40
Explicit-mode server PL/I programming considerations.. 40

Implicit-mode server program logic flow..40
Implicit-mode server call sequence.. 40
Implicit-mode application data... 41
Programming to the Assist module interface.. 42
Implicit-mode server PL/I programming considerations... 42
Implicit-mode server C language programming considerations.. 42
I/O PCB implicit-mode server.. 42

Chapter 6. How to customize and operate the IMS Listener................................... 45
How to start the IMS Listener..45
How to stop the IMS Listener.. 45

iv

The IMS Listener configuration file... 46
TCPIP statement.. 46
LISTENER statement..46
TRANSACTION statement..47

The IMS Listener security exit... 47
TCP/IP services definitions..48

The hlq.PROFILE.TCPIP data set... 48
The hlq.TCPIP.DATA data set..49

Chapter 7. CALL instruction application programming interface............................ 51
CALL instruction API environmental restrictions and programming requirements.................................51
CALL instruction API output register information...52
CALL instruction API compatibility considerations...52
CALL instruction application programming interface (API)..53
Understanding COBOL, Assembler, and PL/I call formats... 53

COBOL language call format.. 53
Assembly language call format..53
PL/I language call format...53

Converting parameter descriptions...54
Diagnosing problems in applications using the CALL instruction API..54
CALL instruction API error messages and return codes...54
Code CALL instructions..55

ACCEPT... 55
BIND... 57
BIND2ADDRSEL... 59
CLOSE... 62
CONNECT..63
FCNTL..66
FREEADDRINFO... 68
GETADDRINFO... 69
GETCLIENTID... 76
GETHOSTBYADDR.. 77
GETHOSTBYNAME... 80
GETHOSTID.. 83
GETHOSTNAME.. 83
GETIBMOPT..85
GETNAMEINFO...87
GETPEERNAME...91
GETSOCKNAME.. 93
GETSOCKOPT... 95
GIVESOCKET.. 111
INET6_IS_SRCADDR..113
INITAPI...116
IOCTL..118
LISTEN..127
NTOP...129
PTON...131
READ...133
READV...134
RECV... 136
RECVFROM... 138
RECVMSG... 141
SELECT... 145
SELECTEX... 149
SEND...153
SENDMSG... 155
SENDTO.. 159

 v

SETSOCKOPT..161
SHUTDOWN..178
SOCKET...179
TAKESOCKET..182
TERMAPI.. 183
WRITE...184
WRITEV...185

Using data translation programs for socket call interface..187
Assembly language utility programs call format...187
Data translation..187
Bit-string processing.. 187

Call interface sample programs.. 200
Sample code for IPv4 server program...200
Sample program for IPv4 client program..203
Sample code for IPv6 server program...205
Sample program for IPv6 client program..208
Common variables used in PL/I sample programs... 211
Common variables used in COBOL sample programs.. 218
COBOL call interface sample IPv6 server program...223
COBOL call interface sample IPv6 client program..231

Chapter 8. IMS Listener samples.. 237
IMS TCP/IP control statements...237

JCL for starting a message processing region...237
JCL for linking the IMS Listener... 237
Listener IMS definitions... 239

Sample program explicit-mode...240
Sample explicit-mode program flow... 240
Sample explicit-mode client program (C language)..240
Sample explicit-mode server program (Assembly language)...242

Sample program implicit-mode.. 248
Sample implicit-mode program flow... 248
Sample implicit-mode client program (C language)... 248
Sample implicit-mode server program (Assembly language).. 251

Sample program - IMS MPP client.. 253
Sample IMS MPP client program flow... 253
Sample client program for non-IMS server... 254
Sample server program for IMS MPP client.. 260

Appendix A. Return codes..267
Sockets return codes (ERRNOs)..267

Appendix B. Related protocol specifications... 279

Appendix C. Accessibility...299

Notices..303
Terms and conditions for product documentation... 304
IBM Online Privacy Statement.. 305
Policy for unsupported hardware..305
Minimum supported hardware..305
Policy for unsupported hardware ... 306
Trademarks.. 306

Bibliography.. 307

vi

Index.. 311

Communicating your comments to IBM.. 317

 vii

viii

Figures

1. The use of TCP/IP with IMS...3

2. TCP/IP protocols when compared to the OSI Model and SNA...4

3. A typical client/server session.. 8

4. An iterative server... 9

5. A concurrent server... 9

6. The SELECT call...13

7. How user applications access TCP/IP networks with IMS TCP/IP.. 17

8. IMS TCP/IP message flow for transaction initiation...21

9. IMS TCP/IP message flow for explicit-mode input/output.. 23

10. IMS TCP/IP message flow for implicit mode input/output.. 24

11. JCL: Sample run Listener procedure.. 45

12. Definition of the TCP/IP profile... 49

13. The TCPIPJOBNAME Parameter in the DATA data set...49

14. Storage definition statement examples... 54

15. ACCEPT call instructions example..56

16. BIND call instruction example..58

17. BIND2ADDRSEL call instruction example..61

18. CLOSE call instruction example..63

19. CONNECT call instruction example.. 64

20. FCNTL call instruction example.. 67

21. FREEADDRINFO call instruction example..68

22. GETADDRINFO call instruction example.. 70

23. GETCLIENTID call instruction example..77

 ix

24. GETHOSTBYADDR call instruction example...78

25. HOSTENT structure that is returned by the GETHOSTBYADDR call..79

26. GETHOSTBYNAME call instruction example.. 80

27. HOSTENT structure returned by the GETHOSTYBYNAME call.. 82

28. GETHOSTID call instruction example...83

29. GETHOSTNAME call instruction example...84

30. GETIBMOPT call instruction example.. 85

31. Example of name field ..87

32. GETNAMEINFO call instruction example... 88

33. GETPEERNAME call instruction example... 92

34. GETSOCKNAME call instruction example...94

35. GETSOCKOPT call instruction example..96

36. GIVESOCKET call instruction example...112

37. INET6_IS_SRCADDR call instruction example.. 114

38. INITAPI call instruction example... 117

39. IOCTL call instruction example.. 119

40. COBOL language example for SIOCGHOMEIF6... 120

41. COBOL language example for SIOCGIFNAMEINDEX.. 122

42. COBOL II example for SIOCGIFCONF.. 127

43. LISTEN call instruction example.. 128

44. NTOP call instruction example... 130

45. PTON call instruction example... 132

46. READ call instruction example... 134

47. READV call instruction example... 135

48. RECV call instruction example..137

x

49. RECVFROM call instruction example..139

50. SELECT call instruction example.. 147

51. SELECTEX call instruction example..150

52. SEND call instruction example... 154

53. SENDTO call instruction example...160

54. SETSOCKOPT call instruction example.. 162

55. SHUTDOWN call instruction example.. 179

56. SOCKET call instruction example... 180

57. TAKESOCKET call instruction example.. 182

58. TERMAPI call instruction example... 184

59. WRITE call instruction example... 185

60. WRITEV call instruction example... 186

61. EZACIC04 EBCDIC-to-ASCII table...188

62. EZACIC04 call instruction example..188

63. EZACIC05 ASCII-to-EBCDIC table...189

64. EZACIC05 call instruction example..189

65. EZACIC06 call instruction example..190

66. EZAZIC08 call instruction example..193

67. EZACIC09 call instruction example (Part 1 of 2)... 195

68. EZACIC09 call instruction example (Part 2 of 2)... 196

69. EZACIC14 EBCDIC-to-ASCII table...197

70. EZACIC14 call instruction example..198

71. EZACIC15 ASCII-to-EBCDIC table...199

72. EZACIC15 call instruction example..199

73. EZASOKPS PL/1 sample server program for IPv4... 202

 xi

74. EZASOKPC PL/1 sample client program for IPv4.. 204

75. EZASO6PS PL/1 sample server program for IPv6... 208

76. EZASO6PC PL/1 sample client program for IPv6.. 211

77. CBLOCK PL/1 common variables... 218

78. EZACOBOL COBOL common variables... 223

79. EZASO6CS COBOL call interface sample IPv6 server program...230

80. EZASO6CC COBOL call interface sample IPv6 client program..236

81. Cross zone Lnk IMS application interface.. 239

82. Sample C client to drive IMS Listener.. 242

83. Sample assembler IMS server..247

84. Sample C client to drive IMS Listener.. 251

85. Sample assembler IMS server..253

86. Sample of IMS program as a client...260

87. Sample of IMS program as a server... 266

xii

Tables

1. First fullword passed in a bit string in select.. 14

2. Second fullword passed in a bit string in select... 15

3. Socket calls..17

4. Format of data passed to the security exit... 48

5. ACCEPT call requirements.. 55

6. BIND call requirements...57

7. BIND2ADDRSEL call requirements...60

8. CLOSE call requirements...62

9. CONNECT call requirements... 64

10. FCNTL call requirements.. 66

11. FREEADDRINFO call requirements.. 68

12. GETADDRINFO call requirements.. 69

13. GETCLIENTID call requirements.. 76

14. GETHOSTBYADDR call requirements... 78

15. GETHOSTBYNAME call requirements.. 80

16. GETHOSTID call requirements... 83

17. GETIBMOPT call requirements...85

18. GETNAMEINFO call requirements..87

19. GETPEERNAME call requirement... 91

20. GETSOCKNAME call requirements... 93

21. GETSOCKOPT call requirements.. 95

22. OPTNAME options for GETSOCKOPT and SETSOCKOPT... 96

23. GIVESOCKET call requirements... 111

 xiii

24. INET6_IS_SRCADDR call requirements...113

25. INITAPI call requirements..116

26. IOCTL call requirements...118

27. IOCTL call arguments... 125

28. LISTEN call requirements...128

29. NTOP call requirements..129

30. PTON call requirements..131

31. READ call requirements..133

32. READV call requirements..134

33. RECV call requirements.. 136

34. RECVFROM call requirements.. 139

35. RECVMSG call requirements.. 141

36. SELECT call requirements.. 145

37. SELECTEX call requirements.. 149

38. SEND call requirements..153

39. SENDMSG call requirements.. 155

40. SENDTO call requirements... 159

41. SETSOCKOPT call requirements...161

42. OPTNAME options for GETSOCKOPT and SETSOCKOPT...162

43. SHUTDOWN call requirements...178

44. SOCKET call requirements..180

45. TAKESOCKET call requirements...182

46. TERMAPI call requirements... 183

47. WRITE call requirements..184

48. WRITEV call requirements..185

xiv

49. Sockets ERRNOs... 267

 xv

xvi

About this document

This document describes how to use IP Services with IMS Version 7 and later. It describes the IMS call
interface and the supporting functions.

This information includes descriptions of support for both IPv4 and IPv6 networking protocols. Unless
explicitly noted, descriptions of IP protocol support concern IPv4. IPv6 support is qualified within the
text.

This information refers to Communications Server data sets by their default SMP/E distribution library
name. Your installation might, however, have different names for these data sets where allowed by
SMP/E, your installation personnel, or administration staff. For instance, this information refers to
samples in SEZAINST library as simply in SEZAINST. Your installation might choose a data set name
of SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set name.

This document addresses the following topics:

• IMS client/server application design
• The IMS Listener
• The IMS Assist function
• The IMS socket calls, including call syntax conventions

Who should read this document
This document is intended for programmers who have some familiarity with IMS Transaction Manager and
IP Services, and who need to develop IMS client/server applications.

To ensure proper interprogram communication, the two halves of a client/server program must be
developed together. At a minimum, they must agree on protocol and data formats. To complicate matters
(particularly in the case of a UNIX processor talking to an IMS mainframe), the technology differences
are so extensive that the two halves will often be coded by different individuals — one, an IP socket
programmer; the other, an IMS programmer.

This document has been designed for users with a variety of backgrounds and needs:

• Application designers need to know how the various components of IMS TCP/IP interact to provide
program-to-program communication. These readers should read Chapter 3, “Principles of operation of
the Listener and the Assist module,” on page 19.

• Experienced IP socket programmers need to know the protocol and message formats necessary to
establish communication with the IMS Listener and with the server program. These readers should read
Chapter 4, “How to write an IMS TCP/IP client program,” on page 29 and Chapter 7, “CALL instruction
application programming interface,” on page 51.

• Experienced IMS application programmers will be familiar with IMS input/output calls (GU, GN, ISRT).
These programmers have two choices:

– Programmers with IMS experience and little or no TCP/IP programming experience will probably
want to use the IMS Assist module, which accepts standard IMS I/O calls, and converts them to
equivalent socket calls. They should read the sections on implicit-mode programming.

– IMS programmers with socket experience can choose to code native C language or use the Sockets
Extended API. These programmers should read the sections on explicit-mode programming and
Chapter 7, “CALL instruction application programming interface,” on page 51.

• IMS system programmers and communication programmers are responsible for the IMS system itself.
These readers should read Chapter 6, “How to customize and operate the IMS Listener,” on page 45.

© Copyright IBM Corp. 2000, 2021 xvii

How this document is organized
z/OS Communications Server: IP IMS Sockets Guide contains the following information:

• An overview of TCP/IP as it is used with IMS and the types of applications for which it is intended to be
used.

• Information about the IMS Listener, including principles of operation, writing and customizing client and
server programs, use of the CALL Instruction API, and samples.

• Appendix A, “Return codes,” on page 267, Appendix B, “Related protocol specifications,” on page 279,
and Appendix C, “Accessibility,” on page 299 provide additional information for this document.

• “Notices” on page 303 contains notices and trademarks used in this information.
• “Bibliography” on page 307 contains descriptions of the documents in the z/OS Communications Server

library.

How to use this document
To use this information, you should be familiar with z/OS TCP/IP services and the TCP/IP suite of
protocols.

How to contact IBM service
For immediate assistance, visit this website: https://www.ibm.com/mysupport

Most problems can be resolved at this website, where you can submit questions and problem reports
electronically, and access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States or Puerto Rico), call
the IBM Software Support Center anytime (1-800-IBM®-SERV). You will receive a return call within 8
business hours (Monday – Friday, 8:00 a.m. – 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or your authorized IBM
supplier.

If you would like to provide feedback on this publication, see “Communicating your comments to IBM” on
page 317.

Conventions and terminology that are used in this information
Commands in this information that can be used in both TSO and z/OS UNIX environments use the
following conventions:

• When describing how to use the command in a TSO environment, the command is presented in
uppercase (for example, NETSTAT).

• When describing how to use the command in a z/OS UNIX environment, the command is presented in
bold lowercase (for example, netstat).

• When referring to the command in a general way in text, the command is presented with an initial
capital letter (for example, Netstat).

All the exit routines described in this information are installation-wide exit routines. The installation-wide
exit routines also called installation-wide exits, exit routines, and exits throughout this information.

The TPF logon manager, although included with VTAM®, is an application program; therefore, the logon
manager is documented separately from VTAM.

Samples used in this information might not be updated for each release. Evaluate a sample carefully
before applying it to your system.

z/OS no longer supports mounting HFS data sets (The POSIX style file system). Instead, a z/OS File
System (ZFS) can be implemented. The term hierarchical file system, abbreviated as HFS, is defined as

xviii About this document

https://www.ibm.com/mysupport

a data structure that has a hierarchical nature with directories and files. References to hierarchical file
systems or HFS might still be in use in z/OS Communications Server publications.

Note: In this information, you might see the following Shared Memory Communications over Remote
Direct Memory Access (SMC-R) terminology:

• RoCE Express®, which is a generic term representing IBM 10 GbE RoCE Express, IBM 10 GbE RoCE
Express2, and IBM 25 GbE RoCE Express2 feature capabilities. When this term is used in this
information, the processing being described applies to all of these features. If processing is applicable
to only one feature, the full terminology, for instance, IBM 10 GbE RoCE Express will be used.

• RoCE Express2, which is a generic term representing an IBM RoCE Express2® feature that might operate
in either 10 GbE or 25 GbE link speed. When this term is used in this information, the processing
being described applies to either link speed. If processing is applicable to only one link speed, the full
terminology, for instance, IBM 25 GbE RoCE Express2 will be used.

• RDMA network interface card (RNIC), which is used to refer to the IBM 10 GbE RoCE Express, IBM® 10
GbE RoCE Express2, or IBM 25 GbE RoCE Express2 feature.

• Shared RoCE environment, which means that the "RoCE Express" feature can be used concurrently, or
shared, by multiple operating system instances. The feature is considered to operate in a shared RoCE
environment even if you use it with a single operating system instance.

Clarification of notes
Information traditionally qualified as Notes is further qualified as follows:
Attention

Indicate the possibility of damage
Guideline

Customary way to perform a procedure
Note

Supplemental detail
Rule

Something you must do; limitations on your actions
Restriction

Indicates certain conditions are not supported; limitations on a product or facility
Requirement

Dependencies, prerequisites
Result

Indicates the outcome
Tip

Offers shortcuts or alternative ways of performing an action; a hint

How to read a syntax diagram
This syntax information applies to all commands and statements that do not have their own syntax
described elsewhere.

The syntax diagram shows you how to specify a command so that the operating system can correctly
interpret what you type. Read the syntax diagram from left to right and from top to bottom, following the
horizontal line (the main path).

Symbols and punctuation
The following symbols are used in syntax diagrams:
Symbol

Description

About this document xix

►►
Marks the beginning of the command syntax.

►
Indicates that the command syntax is continued.

|
Marks the beginning and end of a fragment or part of the command syntax.

►◄
Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation marks, and minus signs
that are shown in the syntax diagram.

Commands
Commands that can be used in both TSO and z/OS UNIX environments use the following conventions in
syntax diagrams:

• When describing how to use the command in a TSO environment, the command is presented in
uppercase (for example, NETSTAT).

• When describing how to use the command in a z/OS UNIX environment, the command is presented in
bold lowercase (for example, netstat).

Parameters
The following types of parameters are used in syntax diagrams.
Required

Required parameters are displayed on the main path.
Optional

Optional parameters are displayed below the main path.
Default

Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS™ console commands, the
keywords are not case sensitive. You can code them in uppercase or lowercase. If the keyword appears
in the syntax diagram in both uppercase and lowercase, the uppercase portion is the abbreviation for the
keyword (for example, OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values you supply. For
example, a data set is a variable.

Syntax examples
In the following example, the PUt subcommand is a keyword. The required variable parameter is
local_file, and the optional variable parameter is foreign_file. Replace the variable parameters with your
own values.

PUt local_file

foreign_file

Longer than one line
If a diagram is longer than one line, the first line ends with a single arrowhead and the second line begins
with a single arrowhead.

xx About this document

The first line of a syntax diagram that is longer than one line

The continuation of the subcommands, parameters, or both

Required operands
Required operands and values appear on the main path line. You must code required operands and
values.

REQUIRED_OPERAND

Optional values
Optional operands and values appear below the main path line. You do not have to code optional
operands and values.

OPERAND

Selecting more than one operand
An arrow returning to the left above a group of operands or values means more than one can be selected,
or a single one can be repeated.

,

REPEATABLE_OPERAND_OR_VALUE_1

REPEATABLE_OPERAND_OR_VALUE_2

REPEATABLE_OPER_OR_VALUE_1

REPEATABLE_OPER_OR_VALUE_2

Nonalphanumeric characters
If a diagram shows a character that is not alphanumeric (such as parentheses, periods, commas, and
equal signs), you must code the character as part of the syntax. In this example, you must code
OPERAND=(001,0.001).

OPERAND = (001 , 0.001)

Blank spaces in syntax diagrams
If a diagram shows a blank space, you must code the blank space as part of the syntax. In this example,
you must code OPERAND=(001 FIXED).

OPERAND = (001 FIXED)

Default operands
Default operands and values appear above the main path line. TCP/IP uses the default if you omit the
operand entirely.

About this document xxi

DEFAULT

OPERAND

Variables
A word in all lowercase italics is a variable. Where you see a variable in the syntax, you must replace it
with one of its allowable names or values, as defined in the text.

variable

Syntax fragments
Some diagrams contain syntax fragments, which serve to break up diagrams that are too long, too
complex, or too repetitious. Syntax fragment names are in mixed case and are shown in the diagram and
in the heading of the fragment. The fragment is placed below the main diagram.

Syntax fragment

Syntax fragment
1ST_OPERAND , 2ND_OPERAND , 3RD_OPERAND

Prerequisite and related information
z/OS Communications Server function is described in the z/OS Communications Server library.
Descriptions of those documents are listed in “Bibliography” on page 307, in the back of this document.

Required information
Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and UNIX System Services.

Softcopy information
Softcopy publications are available in the following collection.

Titles Description

IBM Z Redbooks The IBM Z®® subject areas range from e-business application development
and enablement to hardware, networking, Linux®, solutions, security, parallel
sysplex, and many others. For more information about the Redbooks®

publications, see http://www.redbooks.ibm.com/ and http://www.ibm.com/
systems/z/os/zos/zfavorites/.

Other documents
This information explains how z/OS references information in other documents.

When possible, this information uses cross-document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap (SA23-2299). The Roadmap describes
what level of documents are supplied with each release of z/OS Communications Server, and also
describes each z/OS publication.

To find the complete z/OS library, visit the z/OS library in IBM Documentation (https://www.ibm.com/
docs/en/zos).

xxii About this document

http://www.redbooks.ibm.com
http://www.ibm.com/systems/z/os/zos/zfavorites/
http://www.ibm.com/systems/z/os/zos/zfavorites/
https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en

Relevant RFCs are listed in an appendix of the IP documents. Architectural specifications for the SNA
protocol are listed in an appendix of the SNA documents.

The following table lists documents that might be helpful to readers.

Title Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006 ISBN 13: 978-0596100575

Routing in the Internet, Second Edition, Christian Huitema (Prentice Hall 1999) ISBN 13: 978-0130226471

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX
Domain Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Services System SSL Programming SC14-7495

z/OS IBM Tivoli Directory Server Administration and Use for z/OS SC23-6788

z/OS JES2 Initialization and Tuning Guide SA32-0991

z/OS Problem Management SC23-6844

z/OS MVS Diagnosis: Reference GA32-0904

z/OS MVS Diagnosis: Tools and Service Aids GA32-0905

z/OS MVS Using the Subsystem Interface SA38-0679

z/OS Program Directory GI11-9848

z/OS UNIX System Services Command Reference SA23-2280

z/OS UNIX System Services Planning GA32-0884

z/OS UNIX System Services Programming: Assembler Callable Services
Reference

SA23-2281

z/OS UNIX System Services User's Guide SA23-2279

z/OS XL C/C++ Runtime Library Reference SC14-7314

Open Systems Adapter-Express Customer's Guide and Reference SA22-7935

Redbooks publications
The following Redbooks publications might help you as you implement z/OS Communications Server.

Title Number

IBM z/OS Communications Server TCP/IP Implementation, Volume 1: Base
Functions, Connectivity, and Routing

SG24-8096

About this document xxiii

https://www.ibm.com/servers/resourcelink/lib03010.nsf/pagesByDocid/BC4AE2E43BFCF12C85256CEE000D1130?OpenDocument

Title Number

IBM z/OS Communications Server TCP/IP Implementation, Volume 2: Standard
Applications

SG24-8097

IBM z/OS Communications Server TCP/IP Implementation, Volume 3: High
Availability, Scalability, and Performance

SG24-8098

IBM z/OS Communications Server TCP/IP Implementation, Volume 4: Security
and Policy-Based Networking

SG24-8099

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390 TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements

SG24-5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release availability, migration
information, downloads, and links to information about z/OS technology

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server documentation

http://www.ibm.com/systems/z/os/zos/library/bkserv/

z/OS Communications Server product

The page contains z/OS Communications Server product introduction

https://www.ibm.com/products/zos-communications-server
IBM Communications Server product support

Use this site to submit and track problems and search the z/OS Communications Server knowledge
base for Technotes, FAQs, white papers, and other z/OS Communications Server information

https://www.ibm.com/mysupport

IBM Communications Server performance information

This site contains links to the most recent Communications Server performance reports

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks publications, Redpapers, and Technotes

http://www.redbooks.ibm.com/

xxiv About this document

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/library/bkserv/
https://www.ibm.com/products/zos-communications-server
https://www.ibm.com/mysupport
http://www.ibm.com/support/docview.wss?uid=swg27005524
http://www.redbooks.ibm.com

z/OS Support Community

Search the z/OS Support Community Library for Techdocs (including Flashes, presentations,
Technotes, FAQs, white papers, Customer Support Plans, and Skills Transfer information)

z/OS Support Community

Tivoli® NetView® for z/OS

Use this site to view and download product documentation about Tivoli NetView for z/OS

http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome

RFCs

Search for and view Request for Comments documents in this section of the Internet Engineering Task
Force website, with links to the RFC repository and the IETF Working Groups web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet Engineering Task Force (IETF) and
other groups, in this section of the Internet Engineering Task Force website

http://www.ietf.org/ID.html

Information about web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to websites are provided for convenience only and do not serve as
an endorsement of these websites.

DNS websites
For more information about DNS, see the following USENET news groups and mailing addresses:
USENET news groups

comp.protocols.dns.bind
BIND mailing lists

https://lists.isc.org/mailman/listinfo
BIND Users

• Subscribe by sending mail to bind-users-request@isc.org.
• Submit questions or answers to this forum by sending mail to bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

• Subscribe by sending mail to bind9-users-request@isc.org.
• Submit questions or answers to this forum by sending mail to bind9-users@isc.org.

The z/OS Basic Skills Information Center
The z/OS Basic Skills Information Center is a web-based information resource intended to help users
learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers
in use today. The Information Center is designed to introduce a new generation of Information Technology
professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS
systems programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the following objectives:

• Provide basic education and information about z/OS without charge
• Shorten the time it takes for people to become productive on the mainframe
• Make it easier for new people to learn z/OS

About this document xxv

https://www.ibm.com/mysupport/s/topic/0TO0z0000006v4NGAQ/zos?language=en_US&productId=01t0z000007g70jAAA
http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
https://lists.isc.org/mailman/listinfo

To access the z/OS Basic Skills Information Center, open your web browser to the following website,
which is available to all users (no login required): https://www.ibm.com/support/knowledgecenter/
zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics

xxvi z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics

Summary of changes for IP IMS Sockets Guide

This document contains terminology, maintenance, and editorial changes, including changes to improve
consistency and retrievability. Technical changes or additions to the text and illustrations are indicated by
a vertical line to the left of the change.

Changes made in z/OS Communications Server Version 2 Release 5
This information contains no technical change for this release.

Changes made in z/OS Communications Server Version 2 Release 4
This document contains information previously presented in z/OS Communications Server: IP IMS
Sockets Guide, which supported z/OS Version 2 Release 3.

Changed information

AT-TLS support for TLS v1.3, see Sockets return codes (ERRNOs)

Changes made in z/OS Communications Server Version 2 Release 3
This document contains information previously presented in z/OS Communications Server: IP IMS
Sockets Guide, which supported z/OS Version 2 Release 1.

Changed information
• IPv6 getaddrinfo() API standards compliance, see Parameter values set by the application

(GETADDRINFO code call).

© Copyright IBM Corp. 2000, 2021 xxvii

xxviii z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Chapter 1. Using TCP/IP in the IMS environment

For peer-to-peer applications that use SNA communication facilities, remote programmable devices
communicate with IMS through the advanced program-to-program communication (APPC) API. For
peer-to-peer applications that use TCP/IP communication facilities, remote programmable devices
communicate with IMS through facilities provided by IMS TCP/IP.

The IMS TCP/IP feature provides the services necessary to establish and maintain connection between a
TCP/IP-connected host and an IMS MPP. In addition, you can develop client/server applications by using
the TCP/IP socket application programming interface.

In operation, when a TCP/IP client requires program-to-program communication with an IMS server
message processing program (MPP), the client sends its request to TCP/IP Services. TCP/IP passes the
request to the IMS Listener, which schedules the requested MPP and transfers control of the connection
to it. After control of the connection is passed, data transfer between the server and the remote client is
done by using socket calls.

The role of IMS TCP/IP
The IMS/ESA® database and transaction management facility is used throughout the world. For many
enterprises, IMS is the data processing backbone, supporting large personnel and financial databases,
manufacturing control files, and inventory management facilities. IMS backup and recovery features
protect valuable data assets, and the IMS Transaction Manager provides high-speed access for thousands
of concurrent users.

Traditionally, many IMS users have used 3270-type protocol to communicate with the IMS Transaction
Manager. In that environment, all the processing, including display screen formatting, is done by the IMS
mainframe. During the decade of the 1980s, users began to move some of the processing outboard into
personal computers. However, these PCs were typically connected to IMS through SNA 3270 protocol.

During that period, although most IMS users were focused on 3270 PC emulation, many non-IMS users
were busy building a network based on a different protocol, called TCP/IP. As this trend developed, the
need for an access path between TCP/IP-communicating devices and the still-indispensable processing
power of IMS became clear. IMS TCP/IP provides that access path. Its role can be more easily understood
when one distinguishes between traditional 3270 applications (in which the IMS processor does all the
work), and the more complex client/server applications (in which the application logic is divided between
the IMS processor and another programmable device such as a TCP/IP host).

MVS TCP/IP supports both application types:

• When a TCP/IP host needs access to a traditional 3270 Message Format Service (MFS) application,
it does not have touse the IMS TCP/IP feature; it can connect to IMS directly through Telnet which
provides 3270 emulation services for TCP/IP-connected clients. Telnet is a part of the base TCP/IP
Services product. (See z/OS Communications Server: IP User's Guide and Commands for more
information).

• When a TCP/IP host has to support a client/server application, it should use the IMS TCP/IP feature of
TCP/IP Services. This feature supports two-way client/server communication between an IMS message
processing program (MPP) and a TCP/IP host.

As used in this information, the term client means a program that requests services of another program,
which is known as the server. The client is often a UNIX-based program; however, DOS, Windows, Linux,
CMS, and MVS-based programs can also act as clients. Similarly, the term server means a program that is
often an IMS message processing program (MPP); however, the server can be a TCP/IP host, responding
to an IMS MPP client.

© Copyright IBM Corp. 2000, 2021 1

IMS TCP/IP feature components
The IMS TCP/IP feature consists of the following components:

• The IMS Listener, which provides connectivity
• The IMS Assist module, which simplifies TCP/IP communications programming
• The Sockets Extended application programming interface (API)

The IMS Listener
The purpose of the Listener is to provide clients with a single point of contact to IMS. The IMS Listener
is a batch program (BMP) that waits for connection requests from remote TCP/IP-connected hosts. When
a request arrives, the Listener schedules the appropriate transaction (the server) and passes a TCP/IP
socket (representing the connection) to that server.

The IMS Listener maintains connection requests until the requested MPP takes control of the socket. The
Listener can maintain a variable number of concurrent connection requests.

Tip: The backlog value specified on the listen call cannot be larger than the value configured by the
SOMAXCONN statement in the stack's TCPIP PROFILE (the default value is 10). No error is returned if a
larger backlog is requested. If you want a larger backlog, update the SOMAXCONN statement. See z/OS
Communications Server: IP Configuration Reference for details.

The IMS Assist module
The Assist module is a subroutine that is a part of the server program. Its use is optional. With the Assist
module, you can use conventional IMS calls for TCP/IP communication between client and server. The
Assist module intercepts the IMS calls and issues the corresponding socket commands. Consequently,
IMS MPP programmers who use the IMS Assist module require no TCP/IP skills.

Programs that do use the Assist module are known as implicit-mode programs because the socket calls
are issued implicitly by the Assist module.

Programs that do not use the Assist module issue socket calls directly. Such programs are known as
explicit-mode programs because of their explicit use of the calls.

The MVS TCP/IP socket application programming interface (Sockets
Extended)

The socket call interface provides a set of programming calls that can be used in an IMS message
processing program to conduct a conversation with a peer program in another TCP/IP processor. The
interface is derived from BSD 4.3 socket, a commonly used communications programming interface in
the TCP/IP environment. Socket calls include connection, initiation, and termination functions, and basic
read/write communication. The MVS TCP/IP socket call interface makes it possible to issue socket calls
from programs written in COBOL, PL/I, and assembly language.

The IMS socket calls are a subset of the TCP/IP socket calls. They are designed to be used in programs
written in other than C language; hence the term Sockets Extended.

2 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Chapter 2. IMS TCP/IP

With the IMS TCP/IP feature, remote users can access IMS client/server applications over TCP/IP
internets. It is a feature of TCP/IP Services. Figure 1 on page 3 shows how IMS TCP/IP gives a variety of
remote users peer-to-peer communication with IMS applications.

It is important to understand that IMS TCP/IP is primarily intended to support peer-to-peer applications,
as opposed to the traditional IMS mainframe interactive applications in which the IMS system contained
all programmable logic, and the remote terminal was often referred to as a "dumb" terminal. To connect a
TCP/IP host to one of those traditional applications, you should first consider the use of Telnet, a function
of TCP/IP Services which provides 3270 emulation. With Telnet, you can access existing 3270-style
Message Format Services applications without modification. You should consider IMS TCP/IP only when
developing new peer-to-peer applications in which both ends of the connection are programmable.

System/390

IMS region

IMS
BMP

IMS
OTMA

Connection
Server

IMS
Listener

TCP/IP

for

MVS

LAN

UNIX

OS/2

other
networks

VAX

Figure 1. The use of TCP/IP with IMS

IMS TCP/IP provides a variant of the BSD 4.3 Socket interface, which is widely used in TCP/IP networks
and is based on the UNIX system and other operating systems. The socket interface consists of a
set of calls that IMS application programs can use to set up connections, send and receive data, and
perform general communication control functions. The programs can be written in COBOL, PL/I, assembly
language, or C.

Using IMS with SNA or TCP/IP
IMS is an online transaction processing system. This means that application programs that use IMS can
handle large numbers of data transactions from large networks of computers and terminals.

Communication throughout these networks has often been based on the Systems Network Architecture
(SNA) family of protocols. IMS TCP/IP offers IMS users an alternative to SNA — the TCP/IP family of
protocols for those users whose native communications protocol is TCP/IP.

TCP/IP internets
This topic describes some of the basic ideas behind the TCP/IP family of protocols.

Like SNA, TCP/IP is a set of communication protocols used between physically separated computer
systems. Unlike SNA and most other protocols, TCP/IP is not designed for a particular hardware
technology. TCP/IP can be implemented on a wide variety of physical networks, and is specially designed

© Copyright IBM Corp. 2000, 2021 3

for communicating between systems on different physical networks (local and wide area). This is called
internetworking.

Mainframe interactive processing
TCP/IP Services supports traditional 3270 mainframe interactive (MFI) applications with an emulator
function called Telnet (TN3270). For these applications, all program logic runs in the mainframe, and
the remote host uses only that amount of logic necessary to provide basic communications services.
Thus, if your requirement is simply to provide access from a remote TCP/IP host to existing IMS MFI
applications, you should consider Telnet rather than IMS TCP/IP as the communications vehicle. Telnet
3270-emulation functions allow your TCP/IP host to communicate with traditional applications without
modification.

Client/server processing
TCP/IP also supports client/server processing, where processes are either:

• Servers that provide a particular service and respond to requests for that service
• Clients that initiate the requests to the servers

With IMS TCP/IP, remote client systems can initiate communications with IMS and cause an IMS
transaction to start. It is anticipated that this will be the most common mode of operation. (Alternatively,
the remote system can act as a server with IMS initiating the conversation.)

TCP, UDP, and IP
TCP/IP is a family of protocols that is named after its two most important members. Figure 2 on page 4
shows the TCP/IP protocols used by IMS TCP/IP, in terms of the layered Open Systems Interconnection
(OSI) model, which is widely used to describe data communication systems. For IMS users who might be
more accustomed to SNA, the left side of Figure 2 on page 4 shows the SNA layers, which correspond
very closely to the OSI layers.

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Data Flow

Transmission

Path Control

Data Link

Physical

Application

TCP or UDP

IP

Data Link

Physical

SNA OSI TCP/IP Family

Sockets API

Figure 2. TCP/IP protocols when compared to the OSI Model and SNA

The protocols implemented by TCP/IP Services and used by IMS TCP/IP, are highlighted in Figure 2 on
page 4:
Transmission Control Protocol (TCP)

In terms of the OSI model, TCP is a transport-layer protocol. It provides a reliable virtual-circuit
connection between applications; that is, a connection is established before data transmission begins.
Data is sent without errors or duplication and is received in the same order as it is sent. No boundaries
are imposed on the data; TCP treats the data as a stream of bytes.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It provides an unreliable datagram
connection between applications (that is, data is transmitted link by link; there is no end-to-end

4 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

connection). The service provides no guarantees: data can be lost or duplicated, and datagrams can
arrive out of order.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a datagram service between
applications, supporting both TCP and UDP.

The socket API
The socket API is a collection of socket calls that enable you to perform the following primary
communication functions between application programs:

• Set up and establish connections to other users on the network
• Send and receive data to and from other users
• Close down connections

In addition to these basic functions, the API enables you to:

• Interrogate the network system to get names and status of relevant resources
• Perform system and control functions as required

IMS TCP/IP provides two TCP/IP socket application program interfaces (APIs), similar to those used
on UNIX systems. One interfaces to C language programs, the other to COBOL, PL/I, and System/370*
assembly language programs.

• C language. Historically, TCP/IP has been associated with the C language and the UNIX operating
system. Textbook descriptions of socket calls are usually given in C, and most socket programmers are
familiar with the C interface to TCP/IP. For these reasons, TCP/IP Services includes a C language API. If
you are writing new TCP/IP applications and are familiar with C language programming, you might prefer
to use this interface. Refer to the z/OS Communications Server: IP Sockets Application Programming
Interface Guide and Reference for the C language socket calls supported by MVS TCP/IP.

• Sockets Extended API (COBOL, PL/I, Assembly Language). The Sockets Extended API (Sockets
Extended) is for those who want to write in COBOL, PL/I, or assembly language, or who have COBOL,
PL/I, or assembly language programs that need to be modified to run with TCP/IP. The Sockets
Extended API enables you to do this by using CALL statements. If you are writing new TCP/IP
applications in COBOL, PL/I, or assembly language, you might prefer to use the Sockets Extended
API. With this interface, C language is not required. See Chapter 7, “CALL instruction application
programming interface,” on page 51 for details of this interface.

Programming with sockets
The original UNIX socket interface was designed to hide the physical details of the network. It included
the concept of a socket, which represents the connection to the programmer, yet shields the program
(as much as possible) from the details of communication programming. A socket is an endpoint
for communication that can be named and addressed in a network. From an application program
perspective, a socket is a resource that is allocated by the TCP/IP address space. A socket is represented
to the program by an integer called a socket descriptor.

Socket types
The MVS socket APIs provide a standard interface to the transport and internetwork layer interfaces
of TCP/IP. They support three socket types: stream, datagram, and raw. Stream and datagram sockets
interface to the transport layer protocols, and raw sockets interface to the network layer protocols.
All three socket types are described here for background purposes. While CICS® supports stream and
datagram sockets, stream sockets provide the most reliable form of data transfer offered by TCP/IP.

Stream sockets transmit data between TCP/IP hosts that are already connected to one another. Data
is transmitted in a continuous stream; in other words, there are no record length or newline character
boundaries between data. Communicating processes 1 must agree on a scheme to ensure that both client
and server have received all data. One way of doing this is for the sending process to send the length of

Chapter 2. IMS TCP/IP 5

the data, followed by the data itself. The receiving process reads the length and then loops, accepting
data until all of it has been transferred.

In TCP/IP terminology, the stream socket interface defines a reliable connection-oriented service. In this
context, the word reliable means that data is sent without error or duplication and is received in the same
order as it is sent. Flow control is built in to avoid data overruns.

The datagram socket interface defines a connectionless service. Datagrams are sent as independent
packets. The service provides no guarantees; data can be lost or duplicated, and datagrams can arrive out
of order. The size of a datagram is limited to the size that can be sent in a single transaction (currently the
default is 8192 and the maximum is 65507). No disassembly and reassembly of packets is performed by
TCP/IP.

The raw socket interface allows direct access to lower layer protocols, such as IP and Internet Control
Message Protocol (ICMP). This interface is often used for testing new protocol implementations.

Addressing TCP/IP hosts
This information describes how one TCP/IP host addresses another TCP/IP host. 2

Address families
An address family defines a specific addressing format. Applications that use the same addressing family
have a common scheme for addressing socket end-points. TCP/IP for CICS IMS supports the AF_INET
address family.

Socket addresses
A socket address in the AF_INET family comprises 4 fields: the name of the address family itself
(AF_INET), a port, an IP address, and an 8-byte reserved field. In COBOL, a socket address looks like
this:

01 NAME
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP_ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

You will find this structure in every call that addresses another TCP/IP host.

In this structure, FAMILY is a half-word that defines which addressing family is being used. In CICS, IMS,
FAMILY is always set to a value of 2, which specifies the AF_INET IP address family. 3 The PORT field
identifies the application port number; it must be specified in network byte order. The IP_ADDRESS field is
the IP address of the network interface used by the application. It also must be specified in network byte
order. The RESERVED field should be set to all zeros.

IP addresses
An IP address is a 32-bit field that represents a network interface. An IP address is commonly
represented in dotted decimal notation such as 129.5.25.1. Every IP address within an administered
AF_INET domain must be unique. A common misunderstanding is that a host must have only one IP
address. In fact, a single host can have several IP addresses — one for each network interface.

1 In TCP/IP terminology, a process is essentially the same as an application program.
2 In TCP/IP terminology, a host is simply a computer that is running TCP/IP. There is no connotation of

"mainframe" or large processor within the TCP/IP definition of the word host.
3 Note that sockets support many address families, but TCP/IP for CICS, IMS supports only the IP address

family.

6 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Ports
A port is a 16-bit integer that defines a specific application, within an IP address, in which several
applications use the same network interface. The port number is a qualifier that TCP/IP uses to route
incoming data to a specific application within an IP address. Some port numbers are reserved for
particular applications and are called well-known ports, such as Port 23, which is the well-known port
for Telnet.

As an example, an MVS system with an IP address of 129.9.12.7 might have CICS, IMS as port 2000, and
Telnet as port 23. In this example, a client desiring connection to CICS, IMS would issue a CONNECT call,
requesting port 2000 at IP address 129.9.12.7.

Note: It is important to understand the difference between a socket and a port. TCP/IP defines a port
to represent a certain process on a certain machine (network interface). A port represents the location
of one process in a host that can have many processes. A bound socket represents a specific port and
the IP address of its host. In the case of CICS, the Listener has a listening socket which has a port to
receive incoming connection requests. When a connection request is received, the Listener creates a
new socket representing the endpoint of this connection and passes it to the applications by way of the
givesocket/takesocket calls.

Domain names
Because dotted decimal IP addresses are difficult to remember, TCP/IP also allows you to represent
host interfaces on the network as alphabetic names, such as Alana.E04.IBM.COM, or CrFre@AOL.COM.
Every Domain Name has an equivalent IP address or set of addresses. TCP/IP includes service functions
(GETHOSTBYNAME and GETHOSTBYADDR) that will help you convert from one notation to another.

Network byte order
In the open environment of TCP/IP, IP addresses must be defined in terms of the architecture of the
machines. Some machine architectures, such as IBM mainframes, define the lowest memory address to
be the high-order bit, which is called big endian. However, other architectures, such as IBM PCs, define
the lowest memory address to be the low-order bit, which is called little endian.

Network addresses in a given network must all follow a consistent addressing convention. This
convention, known as network byte order, defines the bit-order of network addresses as they pass
through the network. The TCP/IP standard network byte order is big-endian. In order to participate in a
TCP/IP network, little-endian systems usually bear the burden of conversion to network byte order.

Note: The socket interface does not handle application data bit-order differences. Application writers
must handle these bit order differences themselves.

A typical client/server program flow chart
Stream-oriented socket programs generally follow a prescribed sequence. See Figure 3 on page 8 for
a diagram of the logic flow for a typical client and server. As you study this diagram, keep in mind the
fact that a concurrent server typically starts before the client does, and waits for the client to request
connection at step 3. It then continues to wait for additional client requests after the client connection is
closed.

Chapter 2. IMS TCP/IP 7

1 1

4

8 8

2 2

5

5

3

6,76,7 7,6
Read and write data on socket s, using the

send() and recv() calls, until all data has

been exchanged.

Create a stream socket s with the socket()

call.

Create a stream socket s with the socket()

call.

(Optional)

Bind socket s to a local address with the

bind()

Connect socket s to a foreign host with the

connect()

Close socket s and end the TCP/IP session

with the close() call.

Bind socket s to a local address with the

bind()

With the listen() call, alert the TCP/IP

machine of your willingness to accept

connections.

Accept the connection and receive a

second socket, for example ns, with the

accept()

For the server, socket s remains available

to accept new connections. Socket ns is

dedicated to the client.

Read and write data on socket ns, using

the send() and recv() calls, until all

data has been exchanged.

Close socket ns with the close() call.

Accept another connection from a client,

or close the original socket s with the

close()

CLIENT SERVER

Figure 3. A typical client/server session

Concurrent and iterative servers
An iterative server handles both the connection request and the transaction involved in the call itself.
Iterative servers are fairly simple and are suitable for transactions that do not last long.

However, if the transaction takes more time, queues can build up quickly. In Figure 4 on page 9, once
Client A starts a transaction with the server, Client B cannot make a call until A has finished.

8 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Figure 4. An iterative server

So, for lengthy transactions, a different sort of server is needed — the concurrent server, as shown in
Figure 5 on page 9. Here, Client A has already established a connection with the server, which has
then created a child server process to handle the transaction. This allows the server to process Client B’s
request without waiting for A’s transaction to complete. More than one child server can be started in this
way.

TCP/IP provides a concurrent server program called the IMS Listener. It is described in Chapter 6, “How
to customize and operate the IMS Listener,” on page 45.

Figure 5. A concurrent server

Figure 3 on page 8 illustrates a concurrent server at work.

The basic socket calls
This topic provides an overview of the basic socket calls.

The following calls are used by the server:
SOCKET

Obtains a socket to read from or write to.
BIND

Associates a socket with a port number.

Chapter 2. IMS TCP/IP 9

LISTEN
Tells TCP/IP that this process is listening for connections on this socket.

SELECT
Waits for activity on a socket.

ACCEPT
Accepts a connection from a client.

The following calls are used by a concurrent server to pass the socket from the parent server task
(Listener) to the child server task (user-written application).
GIVESOCKET

Gives a socket to a child server task.
TAKESOCKET

Accepts a socket from a parent server task.
GETCLIENTID

Optionally used by the parent server task to determine its own address space name (if unknown) prior
to issuing the GIVESOCKET.

The following calls are used by the client:
SOCKET

Allocates a socket to read from or write to.
CONNECT

Allows a client to open a connection to a server’s port.

The following calls are used by both the client and the server:
WRITE

Sends data to the process on the other host.
READ

Receives data from the other host.
CLOSE

Terminates a connection, deallocating the socket.

For full discussion and examples of these calls, see Chapter 7, “CALL instruction application programming
interface,” on page 51.

Server TCP/IP calls
To understand Socket programming, the client program and the server program must be considered
separately. In this topic the call sequence for the server is described. “Client TCP/IP calls” on page 12
contains the typical call sequence for a client. Server TCP/IP calls are presented first because the server is
usually already in execution before the client is started. The step numbers (such as 5) in this topic refer to
the steps in Figure 3 on page 8.

Server SOCKET call
The server must first obtain a socket 1. This socket provides an end-point to which clients can connect.

A socket is actually an index into a table of connections in the TCP/IP address space, so TCP/IP usually
assigns socket numbers in ascending order. In COBOL, the programmer uses the SOCKET call to obtain a
new socket.

The socket function specifies the address family (AF_INET), the type of socket (STREAM), and the
particular networking protocol (PROTO) to use. (When PROTO is set to zero, the TCP/IP address space
automatically uses the appropriate protocol for the specified socket type). Upon return, the newly
allocated socket's descriptor is returned in RETCODE.

10 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Server BIND call
At this point 2, an entry in the table of communications has been reserved for the application. However,
the socket has no port or IP address associated with it until the BIND call is issued. The BIND function
requires three parameters:

• The socket descriptor that was just returned by the SOCKET call.
• The number of the port on which the server wants to provide its service
• The IP address of the network connection on which the server is listening. If the application wants to

receive connection requests from any network interface, the IP address should be set to zeros.

Server LISTEN call
After the bind, the server has established a specific IP address and port upon which other TCP/IP
hosts can request connection. Now it must notify the TCP/IP address space that it intends to listen for
connections on this socket. The server does this with the LISTEN3 call, which puts the socket into passive
open mode. Passive open mode describes a socket that can accept connection requests, but cannot be
used for communication. A passive open socket is used by a listener program like the CICS IMS Listener
to await connection requests. Sockets that are directly used for communication between client and server
are known as active open sockets. In passive open mode, the socket is open for client contacts; it also
establishes a backlog queue of pending connections.

This LISTEN call tells the TCP/IP address space that the server is ready to begin accepting connections.
Normally, only the number of requests specified by the BACKLOG parameter will be queued.

Tip: The backlog value specified on the listen call cannot be larger than the value configured by the
SOMAXCONN statement in the stack's TCPIP PROFILE (the default value is 10). No error is returned if a
larger backlog is requested. If you want a larger backlog, update the SOMAXCONN statement. See the
z/OS Communications Server: IP Configuration Reference for details.

Server ACCEPT call
At this time 5, the server has obtained a socket, bound the socket to an IP address and port, and issued
a LISTEN to open the socket. The server main task is now ready for a client to request connection 4. The
ACCEPT call temporarily blocks further progress. 4

The default mode for Accept is blocking. Accept behavior changes when the socket is non-blocking. The
FCNTL() or IOCTL() calls can be used to disable blocking for a given socket. When this is done, calls that
would normally block continue regardless of whether the I/O call has completed. If a socket is set to
non-blocking and an I/O call issued to that socket would otherwise block (because the I/O call has not
completed) the call returns with ERRNO 35 (EWOULDBLOCK).

When the ACCEPT call is issued, the server passes its socket descriptor, S, to TCP/IP. When the
connection is established, the ACCEPT call returns a new socket descriptor (in RETCODE) that represents
the connection with the client. This is the socket upon which the server subtask communicates with
the client. Meanwhile, the original socket (S) is still allocated, bound and ready for use by the main task to
accept subsequent connection requests from other clients.

To accept another connection, the server calls ACCEPT again. By repeatedly calling ACCEPT, a concurrent
server can establish simultaneous sessions with multiple clients.

Server GIVESOCKET and TAKESOCKET calls
The GIVESOCKET and TAKESOCKET functions are not supported with the IMS TCP/IP OTMA Connection
server. A server handling more than one client simultaneously acts like a dispatcher at a messenger
service. A messenger dispatcher gets telephone calls from people who want items delivered and the

4 Blocking is a UNIX concept in which the requesting process is suspended until the request is satisfied. It is
roughly analogous to the MVS wait. A socket is blocked while an I/O call waits for an event to complete. If a
socket is set to block, the calling program is suspended until the expected event completes.

Chapter 2. IMS TCP/IP 11

dispatcher sends out messengers to do the work. In a similar manner, the server receives client requests,
and then spawns tasks to handle each client.

In UNIX-based servers, the fork() system call is used to dispatch a new subtask after the initial connection
has been established. When the fork() command is used, the new process automatically inherits the
socket that is connected to the client.

Because of architectural differences, CICS sockets does not implement the fork() system call. Tasks use
the GIVESOCKET and TAKESOCKET functions to pass sockets from parent to child. The task passing the
socket uses GIVESOCKET, and the task receiving the socket uses TAKESOCKET. See “GIVESOCKET and
TAKESOCKET calls” on page 15 for more information about these calls.

Server READ and WRITE calls
Once a client has been connected with the server, and the socket has been transferred from the main task
(parent) to the subtask (child), the client and server exchange application data, using various forms of
READ/WRITE calls. See “Client Read/Write calls — the conversation” on page 12 for details about these
calls.

Client TCP/IP calls
The TCP/IP call sequence for a client is simpler than the one for a concurrent server. A client has to
support only one connection and one conversation. A concurrent server obtains a socket upon which it
can listen for connection requests, and then creates a new socket for each new connection.

Client SOCKET call
In the same manner as the server, the first call 1 issued by the client is the SOCKET call. This call causes
allocation of the socket on which the client will communicate.

CALL 'EZASOKET' USING SOCKET-FUNCTION SOCTYPE PROTO ERRNO RETCODE.

Client CONNECT call
After the SOCKET call has allocated a socket to the client, the client can then request connection on that
socket with the server through use of the CONNECT call 4.

The CONNECT call attempts to connect socket descriptor (S) to the server with an IP address of NAME.
The CONNECT call blocks until the connection is accepted by the server. On successful return, the socket
descriptor (S) can be used for communication with the server.

This is essentially the same sequence as that of the server; however, the client need not issue a BIND
command because the port of a client has little significance. The client need only issue the CONNECT
call, which issues an implicit BIND. When the CONNECT call is used to bind the socket to a port, the port
number is assigned by the system and discarded when the connection is closed. Such a port is known as
an ephemeral port because its life is very short as compared with that of a concurrent server, whose port
remains available for a prolonged time.

Client Read/Write calls — the conversation
A variety of I/O calls is available to the programmer. The READ and WRITE, READV and WRITEV, and
SEND 6 and RECV 6 calls can be used only on sockets that are in the connected state. The SENDTO and
RECVFROM, and SENDMSG and RECVMSG calls can be used regardless of whether a connection exists.

The WRITEV, READV, SENDMSG, and RECVMSG calls provide the additional features of scatter and gather
data. Scattered data can be located in multiple data buffers. The WRITEV and SENDMSG calls gather
the scattered data and send it. The READV and RECVMSG calls receive data and scatter it into multiple
buffers.

12 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

The WRITE and READ calls specify the socket S on which to communicate, the address in storage of the
buffer that contains, or will contain, the data (BUF), and the amount of data transferred (NBYTE). The
server uses the socket that is returned from the ACCEPT call.

These functions return the amount of data that was either sent or received. Because stream sockets send
and receive information in streams of data, it can take more than one call to WRITE or READ to transfer all
of the data. It is up to the client and server to agree on some mechanism of signaling that all of the data
has been transferred.

Client CLOSE call
When the conversation is over, both the client and server call CLOSE to end the connection. The CLOSE
call also deallocates the socket, freeing its space in the table of connections.

Other socket calls
Several other calls that are often used — particularly in servers — are the SELECT call, the GIVESOCKET/
TAKESOCKET calls, and the IOCTL and FCTL calls. These calls are discussed next.

The SELECT call
Applications such as concurrent servers often handle multiple sockets at once. In such situations, the
SELECT call can be used to simplify the determination of which sockets have data to be read, which are
ready for data to be written, and which have pending exceptional conditions. An example of how the
SELECT call is used can be found in Figure 6 on page 13.

 WORKING STORAGE
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.
 01 MAXSOC PIC 9(8) BINARY VALUE 50.
 01 TIMEOUT.
 03 TIMEOUT-SECONDS PIC 9(8) BINARY.
 03 TIMEOUT-MILLISEC PIC 9(8) BINARY.
 01 RSNDMASK PIC X(50).
 01 WSNDMASK PIC X(50).
 01 ESNDMASK PIC X(50).
 01 RRETMASK PIC X(50).
 01 WRETMASK PIC X(50).
 01 ERETMASK PIC X(50).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
 RSNDMASK WSNDMASK ESNDMASK
 RRETMASK WRETMASK ERETMASK
 ERRNO RETCODE.

Figure 6. The SELECT call

In this example, the application sends bit sets (the xSNDMASK sets) to indicate which sockets are to be
tested for certain conditions, and receives another set of bits (the xRETMASK sets) from TCP/IP to indicate
which sockets meet the specified conditions.

The example also indicates a time-out. If the time-out parameter is NULL, this is the C language API
equivalent of a wait forever. (In Sockets Extended, a negative timeout value is a wait forever.) If the
time-out parameter is nonzero, SELECT waits only the timeout amount of time for at least one socket to
become ready on the indicated conditions. This is useful for applications servicing multiple connections
that cannot afford to wait for data on a single connection. If the xSNDMASK bits are all zero, SELECT acts
as a timer.

With the Socket SELECT call, you can define which sockets you want to test (the xSNDMASKs) and then
wait (block) until one of the specified sockets is ready to be processed. When the SELECT call returns, the
program knows only that some event has occurred, and it must test a set of bit masks (xRETMASKs) to
determine which of the sockets had the event, and what the event was.

Chapter 2. IMS TCP/IP 13

To maximize performance, a server should test only those sockets that are active. The SELECT call allows
an application to select which sockets will be tested, and for what. When the Select call is issued, it blocks
until the specified sockets are ready to be serviced (or, optionally) until a timer expires. When the select
call returns, the program must check to see which sockets require service, and then process them.

To allow you to test any number of sockets with just one call to SELECT, place the sockets to test into a bit
set, passing the bit set to the select call. A bit set is a string of bits where each possible member of the set
is represented by a 0 or a 1. If the member’s bit is 0, the member is not to be tested. If the member’s bit
is 1, the member is to be tested. Socket descriptors are actually small integers. If socket 3 is a member of
a bit set, then bit 3 is set; otherwise, bit 3 is zero.

Therefore, the server specifies 3 bit sets of sockets in its call to the SELECT function: one bit set for
sockets on which to receive data; another for sockets on which to write data; and any sockets with
exception conditions. The SELECT call tests each selected socket for activity and returns only those
sockets that have completed. On return, if a socket's bit is raised, the socket is ready for reading data or
for writing data, or an exceptional condition has occurred.

The format of the bit strings is a bit awkward for an assembler programmer who is accustomed to bit
strings that are counted from left to right. Instead, these bit strings are counted from right to left.

The first rule is that the length of a bit string is always expressed as a number of fullwords. If the highest
socket descriptor you want to test is socket descriptor number three, you have to pass a 4-byte bit string,
because this is the minimum length. If the highest number is 32, you must pass 8 bytes (2 fullwords).

The number of fullwords in each select mask can be calculated as:

INT(highest socket descriptor / 32) + 1

Look at the first fullword you pass in a bit string in Table 1 on page 14.

Table 1. First fullword passed in a bit string in select

Socket descriptor
numbers
represented by
byte

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 0 31 30 29 28 27 26 25 24

Byte 1 23 22 21 20 19 18 17 16

Byte 2 15 14 13 12 11 10 9 8

Byte 3 7 6 5 4 3 2 1 0

In these examples, we use standard assembler numbering notation; the leftmost bit or byte is relative
zero.

If you want to test socket descriptor number 5 for pending read activity, you raise bit 2 in byte 3 of the
first fullword (X'00000020'). If you want to test both socket descriptor 4 and 5, you raise both bit 2 and
bit 3 in byte 3 of the first fullword (X'00000030').

If you want to test socket descriptor number 32, you must pass two fullwords, where the numbering
scheme for the second fullword resembles that of the first. Socket descriptor number 32 is bit 7 in byte 3
of the second fullword. If you want to test socket descriptors 5 and 32, you pass two fullwords with the
following content: X'0000002000000001'.

The bits in the second fullword represents the socket descriptor numbers shown in Table 2 on page 15.
Subsequent mask words continue this pattern; word 3 for sockets 64 – 95, word 4 for sockets 96 – 127,
and so on.

14 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 2. Second fullword passed in a bit string in select

Socket descriptor
numbers
represented by
byte

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 4 63 62 61 60 59 58 57 56

Byte 5 55 54 53 52 51 50 49 48

Byte 6 47 46 45 44 43 42 41 40

Byte 7 39 38 37 36 35 34 33 32

If you develop your program in COBOL or PL/I, you might find that the EZACIC06 routine, which is
provided as part of TCP/IP for MVS, will make it easier for you to build and test these bit strings. This
routine translates between a character string mask (one byte per socket) and a bit string mask (one bit
per socket).

In addition to its function of reporting completion on Read/Write events, the SELECT call can also be used
to determine completion of events associated with the LISTEN and GIVESOCKET calls.

• When a connection request is pending on the socket for which the main process issued the LISTEN call,
it will be reported as a pending read.

• When the parent process has issued a GIVESOCKET, and the child process has taken the socket, the
parent's socket descriptor is selected with an exception condition. The parent process is expected to
close the socket descriptor when this happens.

IOCTL and FCNTL calls
In addition to SELECT, applications can use the IOCTL or FCNTL calls to help perform asynchronous
(nonblocking) socket operations.

The IOCTL call has many functions; establishing blocking mode is only one of its functions. The value
in COMMAND determines which function IOCTL will perform. The REQARG of 0 specifies non-blocking
(a REQARG of 1 would request that socket S be set to blocking mode). When this socket is passed as a
parameter to a call that would block (such as RECV when data is not present), the call returns with an
error code in RETCODE, and ERRNO set to EWOULDBLOCK. Setting the mode of the socket to nonblocking
allows an application to continue processing without becoming blocked.

GIVESOCKET and TAKESOCKET calls
The GIVESOCKET and TAKESOCKET functions are not supported with the IMS TCP/IP OTMA Connection
server. Tasks use the GIVESOCKET and TAKESOCKET functions to pass sockets from parent to child.

For programs using TCP/IP for MVS, each task has its own unique 8-byte name. The main server task
passes three arguments to the GIVESOCKET call:

• The socket number it wants to give
• Its own name 5

• The name of the task to which it wants to give the socket

If the server does not know the name of the subtask that will receive the socket, it blanks out the name of
the subtask. 6 The first subtask calling TAKESOCKET with the server’s unique name receives the socket.

5 If a task does not know its address space name, it can use the GETCLIENTID function call to determine its
unique name.

6 This is the case in IMS because the Listener has no way of knowing which Message Processing Region will
inherit the socket.

Chapter 2. IMS TCP/IP 15

The subtask that receives the socket must know the main task’s unique name and the number of the
socket that it is to receive. This information must be passed from main task to subtask in a work area that
is common to both tasks.

• In IMS, the parent task name and the number of the socket descriptor are passed from parent (Listener)
to child (MPP) through the message queue.

• In CICS, the parent task name and the socket descriptor number are passed from the parent (Listener)
to the transaction program by means of` the EXEC CICS START and EXEC CICS RETREIVE function.

Because each task has its own socket table, the socket descriptor obtained by the main task is not the
socket descriptor that the subtask will use. When TAKESOCKET accepts the socket that has been given,
the TAKESOCKET call assigns a new socket number for the subtask to use. This new socket number
represents the same connection as the parent’s socket. (The transferred socket might be referred to as
socket number 54 by the parent task and as socket number 3 by the subtask; however, both socket
descriptors represent the same connection.)

Once the socket has successfully been transferred, the TCP/IP address space posts an exceptional
condition on the parent’s socket. The parent uses the SELECT call to test for this condition. When the
parent task SELECT call returns with the exception condition on that socket (indicating that the socket has
been successfully passed) the parent issues CLOSE to complete the transfer and deallocate the socket
from the main task.

To continue the sequence, when another client request comes in, the concurrent server (Listener)
gets another new socket, passes the new socket to the new subtask, and dissociates itself from that
connection. And so on.

Summary of passing the socket process
The process of passing the socket is accomplished in the following way:

• After creating a subtask, the server main task issues the GIVESOCKET call to pass the socket to the
subtask. If the subtask’s address space name and subtask ID are specified in the GIVESOCKET call, (as
with CICS) only a subtask with a matching address space and subtask ID can take the socket. If this
field is set to blanks, (as with IMS) any MVS address space requesting a socket can take this socket.

• The server main task then passes the socket descriptor and concurrent server’s ID to the subtask using
some form of commonly addressable technique such as the IMS Message Queue.

• The concurrent server issues the SELECT call to determine when the GIVESOCKET has successfully
completed.

• The subtask calls TAKESOCKET with the concurrent server’s ID and socket descriptor and uses the
resulting socket descriptor for communication with the client.

• When the GIVESOCKET has successfully completed, the concurrent server issues the CLOSE call to
complete the handoff.

An example of a concurrent server is the IMS Listener. It is described in Chapter 6, “How to customize and
operate the IMS Listener,” on page 45. Figure 5 on page 9 shows a concurrent server.

What you need to run IMS TCP/IP
IMS TCP/IP using the IMS Listener and IMS Assist Module is designed for use on an MVS/SP host system
running IMS/ESA Version 4 or later.

A TCP/IP host can communicate with any remote IMS or non-IMS system that runs TCP/IP. The remote
system can, for example, run a UNIX or OS/2 operating system.

TCP/IP services is not described in this information because it is a prerequisite for IMS TCP/IP. However,
much material from the TCP/IP library has been repeated in this information in an attempt to make it
independent of that library.

16 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

A summary of what IMS TCP/IP provides
Figure 7 on page 17 shows how IMS TCP/IP allows IMS applications to access the TCP/IP network. It
shows that IMS TCP/IP makes the following facilities available to your application programs:

The sockets calls (1 and 2 in Figure 7 on page 17)

The socket API is available both in the C language and in COBOL, PL/I, or assembly language. Table 3 on
page 17 shows the socket calls included in the socket API.

Table 3. Socket calls

Call type Calls

Basic socket, bind, connect, listen, accept, shutdown, close

Read/write send, sendto, recvfrom, read, write

Advanced gethostname, gethostbyaddr, gethostbyname, getpeername, getsockname,
getsockopt, setsockopt, fcntl, ioctl, select

IBM-specific initapi, getclientid, givesocket, takesocket

Figure 7. How user applications access TCP/IP networks with IMS TCP/IP

IMS TCP/IP provides for both connection-oriented and connectionless (datagram) services, using the TCP
and UDP protocols respectively. TCP/IP does not support the IP (raw socket) protocol.

The Listener (4) in Figure 7 on page 17.

IMS TCP/IP includes a concurrent server application, called the Listener, to which the client makes initial
connection requests. The Listener passes the connection request on to the user-written server, which is
typically an IMS Message Processing Program.

Conversion routines (5) in Figure 7 on page 17.

IMS TCP/IP provides the following conversion routines, which are part of the base TCP/IP Services
product:

Chapter 2. IMS TCP/IP 17

• An EBCDIC-to-ASCII conversion routine, used to convert EBCDIC data to the ASCII format that is used
in TCP/IP networks and workstations. The conversion routine is run by calling the EBCDIC-to-ASCII
translation table EZACIC04, shown in the z/OS Communications Server: IP Configuration Reference.

• A corresponding ASCII-to-EBCDIC conversion routine (EZACIC05), shown in the z/OS Communications
Server: IP Configuration Reference.

• An alternative EBCDIC-to-ASCII conversion routine (EZACIC14).
• Corresponding ASCII-to-EBCDIC conversion routine (EZACIC15).
• A module that converts COBOL character arrays into bit-mask arrays used in TCP/IP. This module, which

is run by calling EZACIC06, is used with the socket SELECTSELECT call.
• A module that interprets a C language structure known as Hostent (EZACIC08).

18 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Chapter 3. Principles of operation of the Listener and
the Assist module

This information describes the operation of the Listener and the Assist module. Its purpose is to explain
how a TCP/IP-to-IMS connection is established, and how the client and server exchange application
data. For specific data formats and the socket protocols used when coding a TCP/IP client or server, see
Chapter 4, “How to write an IMS TCP/IP client program,” on page 29 and Chapter 5, “How to write an
IMS TCP/IP server program,” on page 37.

Overview of the Listener and the Assist module
The IMS TCP/IP feature consists of 3 components: the IMS Listener, the IMS Assist module, and the
Sockets Extended API. 7 The Sockets Extended API can either be used independently, or with the other
2 components. When the Sockets Extended interface is used independently, an IMS MPP can either serve
as a client or as a server.

When the IMS Listener is used, the IMS MPP acts as a server, and the TCP/IP remote acts as the client.
The Assist module is dependent upon the IMS Listener; therefore, when the Assist module is used, IMS is
the server.

Because the Listener and the Assist module are designed to support IMS as a server, this information is
based on that assumption. For a discussion of IMS as client, see “When the client is an IMS MPP” on page
27, and the sample program on “Sample program - IMS MPP client” on page 253.

The role of the IMS Listener
Because the IMS Transaction Manager does not support direct connection with TCP/IP, some other
program must establish that connection. When IMS is acting as a server to a TCP/IP-connected client,
that program is the IMS Listener — an IMS batch message program (BMP) whose main function it is to
establish connection between the client and the requested IMS transaction.

When the client requests the services of an IMS message processing program (MPP), it sends a message
to the IMS host containing the transaction code of that MPP. The IMS Listener receives that request
and schedules the requested MPP; it then holds the connection until the MPP starts and accepts the
connection. Once the MPP owns the connection, the Listener is no longer involved with it.

The role of the IMS Assist module
The IMS Assist module is a subroutine, called from an IMS MPP (server) that translates conventional IMS
communication calls into the corresponding socket calls. Its use is optional. Its purpose is to shield the
programmer from having to understand TCP/IP programming. To exchange data with the client, the server
program issues traditional IMS message queue calls (GU, GN, ISRT). These calls are intercepted by the
Assist module, which issues the appropriate socket calls.

Pros and cons for the use of the IMS Assist module
The Assist module makes message processing program (MPP) coding easier, but is accompanied by a
series of trade-offs. This information discusses the trade-offs between implicit mode and explicit mode.

• Implicit-mode application programmers use conventional IMS Transaction Manager (TM) calls and
require no special training; explicit-mode application programmers must understand TCP/IP socket
calls and protocols.

7 Shipped with the TCP/IP Services base product.

© Copyright IBM Corp. 2000, 2021 19

• Implicit-mode transactions must adhere to constraints imposed by the IMS Assist module. By
contrast, explicit-mode transactions use the TCP/IP socket call interface and have no specific protocol
requirements other than the orderly initiation and termination of the transaction.

• Implicit-mode transactions obtain their message input from the IMS message queue. Because the
Listener must put the input message segments on the queue before the server begins execution, the
client sends all application data with the transaction request. Explicit-mode transactions bypass the
message queue for all application data — both input, and output.

• Implicit-mode transactions are limited to a single GU-GN/ISRT iteration (one input of one or more
segments, followed by one output of one or more segments) for each message retrieved from the
IMS message queue. By contrast, explicit-mode transactions have no such limit. Unlimited read/write
sequences make it possible to design conversations in which the two programs talk back and forth
without limit. 8

Client/server logic flow
This information describes the flow of a client/server application through the system — starting with the
client and continuing on through the Listener to the server. The complete transaction, including initiation,
execution, and termination is traced.

How the connection is established
The following paragraphs describe the functions the Listener performs in coordinating between the client
and the server. With the exception of paragraph 6, the Listener performs the same steps for both explicit-
and implicit-mode servers. Paragraph numbers correspond to the step numbers in Figure 8.

8 Because of the potential for long running conversations, MPPs with multiple conversational iterations
should be carefully designed to avoid the possibility of extended message processing region occupancy.

20 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

IMS Message
Queue

Server

Connection
Request

Client

1

IMS Transaction Manager

MVS TCP/IP

IMS Listener

accept()

listen()

read TRM

verify transaction

ISRT TIM

read()
ISRT

givesocket()

SYNC

6*

5

4

3

2

1

client data}

7

8

*implicit-mode only

Figure 8. IMS TCP/IP message flow for transaction initiation

1. Connection request

The IMS Listener is an IMS batch message processing program (BMP). When the Listener starts, it
establishes a socket on which it can "listen" for connection requests. It binds itself to the specified
port, and then listens for requests from TCP/IP clients. When a client sends a connection request, MVS
TCP/IP notifies the Listener of the request.

2. Connection processing

When the Listener receives a connection request, it issues a socket ACCEPT call, which creates a new
socket specifically for that connection.

3. Transaction-Request Message

The client then sends a transaction-request message (TRM) segment, which includes the 8-byte name
of the requested IMS server transaction (otherwise known as the TRANCODE).

Chapter 3. Principles of operation of the Listener and the Assist module 21

4. Transaction verification

The Listener performs several tests to ensure that the requested transaction should be accepted:

• The TRANCODE is tested against IMS Listener configuration file TRANSACTION statements to ensure
that the requested transaction is eligible to be run from a TCP/IP client.

• If security data is included in the transaction-request message (TRM), that data is passed to a
user-written security exit. The purpose of this exit is to validate the credentials of the client before
allowing the transaction to be scheduled.

• The Listener issues an IMS CHNG call to a modifiable alternate PCB, specifying the TRANCODE of the
required transaction. It then issues an IMS INQY call to ensure that the transaction is not stopped
(due to previous abend or Master Terminal Operator action).

The following actions depend on the results of the verification:

• If the transaction request is rejected, the IMS Listener returns a request-status message (RSM)
segment to the client with an indication of the reason for rejecting the request; it then closes the
connection.

• If the transaction request is accepted the requested transaction is scheduled (the Listener does not
return a status message to the client).

5. Transaction Initiation Message (TIM)

The Listener then inserts (ISRT) a transaction initiation message (TIM) segment to the IMS message
queue. This message contains information needed by the server program when it takes responsibility
for the connection.

Note: The client sends the transaction request message (TRM) to the Listener. The Listener sends the
transaction initiation message (TIM) to the server.

6. Client-to-server input data transfer (implicit mode only)

If the transaction is in implicit mode, the Listener reads the client-to-server input data and places it on
the message queue.

7. Pass the socket to the server

Next, the Listener issues a GIVESOCKET call, which makes the socket available to the server program.
8. Schedule the transaction

Finally, the Listener issues an IMS SYNC call to schedule the requested IMS transaction and waits for
the server program to take responsibility for the connection.

When the server issues a TAKESOCKET call, the Listener has completed its responsibility for the socket
and dissociates itself from the connection.

Note: The Listener is a never-ending IMS Batch Message Program, which processes multiple concurrent
transactions.

How the server exchanges data with the client
Once the server begins execution, the protocol to pass input data to the server is a function of whether
the transaction mode is explicit or implicit.

Explicit-mode transactions
The following information describes an explicit-mode server program which exchanges application data
with a client.

Step numbers in Figure 9 correspond to the paragraph numbers below.

22 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

IMS Message
Queue

Server

Client

IMS Transaction Manager

MVS TCP/IP

IMS Listener

2

3

4

1

GU TIM

takesocket()

read()

write()

read()

write()

database calls

GU TIM

close()

Figure 9. IMS TCP/IP message flow for explicit-mode input/output

1. Once an explicit-mode server begins execution, it issues an IMS GU call to obtain the transaction
initiation message (TIM) segment, an INITAPI to establish connection with MVS TCP/IP, and a
TAKESOCKET call to establish direct connection between client and server.

2. Subsequently, socket READ and WRITE commands are used to exchange data between client and
server. The conversation can consist of any number of database calls and socket READ/WRITE
exchanges. 9 Client data is not passed through the IMS message queue and is not subject to any
predefined protocols.

3. The transaction indicates completion by issuing another GU to the I/O PCB. This notifies the
Transaction Manager that the database changes should be committed. At this point, the server

9 Because of the potential for long running conversations, MPPs with multiple conversational iterations
should be carefully designed to avoid the possibility of extended message processing region occupancy.

Chapter 3. Principles of operation of the Listener and the Assist module 23

program might send a message to the client indicating that the database changes have been
successfully completed.

If another message awaits this transaction, the GU will cause the first segment of that message to be
retrieved and the program should issue a new TAKESOCKET call to start the process again.

4. When the GU call returns with a QC status code, the server ends the conversation by closing the
socket.

Implicit-mode transactions
The following information describes how the Assist module and the server program interact to exchange
application data with the client. The paragraph numbers correspond to the step numbers in Figure 3.

IMS
Message
Queue

Server

Client

IMSTM

MVS TCP/IP

Database calls and

I/O PCB calls can be

intermixed

IMS

Listener

Assist Module

GU TIM

takesocket()

GN appl data 1

GN appl data 2

GN appl data 3

accumulate output data

write() appl data 1

write() appl data 2

write() appl data 3

GU TIM

write() CSMOKY

close

GU IOPCB

GN IOPCB

GN IOPCB

ISRT IOPCB

ISRT IOPCB

ISRT IOPCB

GU IOPCB

*

1 2

3

4

5
6

7

8

*

Figure 10. IMS TCP/IP message flow for implicit mode input/output

1. Server GU

24 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

GU must be the first IMS call issued by the server to the I/O PCB. The Assist module retrieves the
first segment from the message queue and examines it (for *LISTNR* in the first field) to determine
whether it is a transaction initiation message. (If the message was not sent by the Listener, the Assist
module assumes the transaction was started by an SNA terminal and immediately passes the input
segment to the server. In this case, subsequent I/O PCB calls (as well as database calls) are passed
directly through to IMS without further consideration.)

2. Transaction Initiation Message (TIM)

If the message was sent by the Listener, the initial message segment is the transaction initiation
message (TIM); the Assist module does not return it to the server. Instead, the Assist module uses
the TIM contents to issue the TAKESOCKET to establish connection between the client and the server
program.

3. Server input data

After the server owns the socket, the Assist module issues a GN to retrieve the first segment of the
client input message and returns it to the server program. Thus, the server program never sees the
TIM; it receives the first data segment in response to its GU. Subsequent GN calls from the server
cause the Assist module to retrieve the remaining segments of the message. When the Assist module
reads the last input segment for that transaction from the message queue, it receives a QD status code
from IMS, which it returns to the server program.

After the initial GU to the I/O PCB, server GN calls, ISRT calls, and database calls can be intermixed.
4. Server output data

When the server program issues ISRT calls to send output message segments to the client, the IMS
Assist module accumulates the output segments, up to maximum of 32KB, into a buffer.

5. Commit

The server signals completion by issuing a GU to the I/O PCB.
6. TCP/IP writes application data to the client.

When the server issues the GU, the Assist module issues WRITE calls to send the data to the client and
passes the GU to the IMS Transaction Manager to commit the database changes.

7. Confirmation

If the GU is successful, (that is, QC status or spaces) the Assist module sends a complete-status
message segment (CSM) to the client to confirm the successful commit and passes the status code
back to the server.

8. Close the socket

After the complete-status message has been sent to the client, the Assist module closes the socket,
ending the connection.

If the GU in the previous step resulted in a 'bb' status code (indicating successful return of another
message) the program logic returns to step 2 to process the new message.

How the IMS Listener manages multiple connection requests
The IMS Listener uses two queues for the management of connection requests:

1. The backlog queue (managed by MVS TCP/IP) contains client connection requests that have not yet
been accepted by the Listener. If a client requests a connection while the backlog queue is full, TCP/IP
rejects the connection request. The number of requests allowed in the backlog queue is specified in
the LISTENER startup configuration statement (BACKLOG parameter), see “LISTENER statement” on
page 46.

2. The active sockets queue contains the sockets that are held by the Listener while they wait for
assignment to a server program. After the Listener has accepted the connection, the connection
belongs to the Listener until it is accepted by the server. If the Listener uses all of its sockets
and cannot accept any more connections, subsequent requests go into the backlog queue. The

Chapter 3. Principles of operation of the Listener and the Assist module 25

maximum number of sockets available is specified in the LISTENER startup configuration statement,
(MAXACTSKT parameter), see “LISTENER statement” on page 46.

Tip: The backlog value specified on the listen call cannot be larger than the value configured by the
SOMAXCONN statement in the stack's TCPIP PROFILE (the default value is 10). No error is returned if
a larger backlog is requested. If you want a larger backlog, update the SOMAXCONN statement. See
the z/OS Communications Server: IP Configuration Reference for details.

Use of the IMS message queue
In conventional 3270 applications, the IMS message queue is a mechanism for passing communications
between an MPP and another entity, such as a 3270-type terminal, or another message processing
program (MPP). The IMS TCP/IP feature uses the message queue for communication between the
Listener and the MPP. Messages from and to TCP/IP hosts bypass IMS message format services (MFS).
The following information describes how IMS TCP/IP uses the IMS message queue:

Input messages
(Messages that are input to the MPP)

• Explicit-mode transactions use only the message queue to pass the transaction initiation message (TIM)
from the Listener to the server. All application data sent by the client is received by the server using
sockets READ calls, thus bypassing the IMS message queue.

• Implicit-mode transactions use the message queue both for the TIM (which is trapped by the Assist
module and not passed on to the server) and for all client-to-server application data (which is passed to
the server in response to IMS GU, GN calls).

Output messages
All messages that are output from the server go directly via TCP/IP to the client; they do not pass through
the message queue.

• Explicit-mode servers use socket WRITE calls to send application data directly to the client.
• Implicit-mode servers use the IMS ISRT call for output, but the inserted data is trapped by the Assist

module which, in turn, issues socket WRITE calls to send the data to the client.

Call sequence for the IMS Listener
Although you will probably not be writing a Listener program, it is important that you match the sequence
of calls issued by the Listener when you write your client program. The Listener call sequence is:

INITIALIZE LISTENER
INITAPI

Connect the Listener to MVS TCP/IP at Listener startup. (This call is used only in programs written to
the Sockets Extended interface.

SOCKET
Create a socket descriptor.

BIND
Allocate the local port for the socket. This port is used by clients when requesting connection to IMS.

LISTEN
Create a queue for incoming connections.

WAIT FOR CONNECTION REQUEST
SELECT

Wait for an incoming connection request.
ACCEPT

Accept the incoming connection request; create a new socket descriptor to be used by the server for
this specific connection.

26 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

READ
Read TRM; determine the IMS TRANCODE.

CHNG
Change the modifiable alternate PCB to reflect the desired IMS TRANCODE.

INQY
Ensure the desired IMS TRANCODE is available for scheduling.

ISRT
Use the alternate PCB to insert the transaction initiation message (TIM) and pass control information
and user input data to the server.

GIVESOCKET
Pass the newly created socket to the server.

SYNC
Schedule the requested transaction.

SELECT
Wait for the server to take the socket.

CLOSE
Release the socket.

END OF CONNECTION REQUEST
Return to "WAIT FOR CONNECTION REQUEST"

SHUTDOWN LISTENER
CLOSE

Close the socket through which the Listener receives connection requests from MVS TCP/IP.
TERMAPI

Disconnect the Listener from MVS TCP/IP before shutting down.

Application design considerations
The following information is a set of guidelines and limitations that should be considered when you are
designing IMS TCP/IP applications.

Programs that are not started by the IMS Listener
In most cases, IMS server applications are started by the IMS Listener. Such programs are known as
dependent programs because the Listener establishes the TCP/IP connection.

Under some circumstances, application design considerations require an application to establish its own
connection between TCP/IP and IMS. For example, an IMS message processing program (MPP) might
require the services of a UNIX processor that is connected through TCP/IP. An IMS application of this
type is known as an independent program because it is not started by the Listener. Because independent
programs do not use Listener services, they must define their own protocol.

When the client is an IMS MPP
For this example, the underlying assumption is that the TCP/IP host acts as client and the IMS MPP acts
as server; however, this is not always the case.

Consider an IMS MPP that requires the services of an AIX® host that is connected through TCP/IP. Such
an MPP (acting as a client) initiates a TCP/IP conversation by issuing the client TCP/IP call sequence. The
TCP/IP host would respond with the server TCP/IP call sequence. This application design is supported
because the MPP communicates directly with MVS TCP/IP. The IMS TCP/IP feature does not impose any
unique restrictions on the type and usage of socket calls issued by such a program; however, because
of the unique and unstructured communication requirements of this application design, you must use
explicit mode for this type of program.

Chapter 3. Principles of operation of the Listener and the Assist module 27

Abend processing
When a task that owns a socket fails, MVS TCP/IP closes the socket. Therefore, when an IMS MPP
abnormally ends as a the result of an error condition, regardless of the reason, the socket is no longer
available and communication between the server and the client is no longer possible.

True abends
If an IMS TCP/IP server program abnormally ends (for example, because of an S0Cx condition), database
changes in progress are backed out and the transaction task is terminated, which breaks the TCP/IP
connection. When the connection is broken, the client receives a negative status code and an error
number that indicates that the connection has been broken. Upon receipt of this indication, the client
should assume that the transaction did not complete and that the database changes have not been made.
The client could reschedule the transaction, but the IMS TM will have probably stopped it from further
running as a result of the abnormal end.

The solution is to correct the reason for the abnormal end and restart the transaction.

Pseudo abends
Under certain situations IMS applications cannot complete. When such a condition occurs, IMS
abnormally ends the MPR with a status code (such as U0777) and reschedules it. This action is not
apparent to the conventional 3270-type user.

However, when an IMS TCP/IP transaction is abnormally ended, the action is apparent to the client
because the connection between client and server is lost when the server MPR is abnormally ended. In
this case, IMS TM reschedules the transaction and places the input message (including the TIM) back
on the message queue. When the transaction is rescheduled and issues a GU for the TIM, the socket
described in the TIM no longer represents a valid connection. and the associated TAKESOCKET call fails.
At this time, the Assist module detects the failure of the socket call and returns a ZZ status code to the
server program. Upon receipt of this status code, the server program should end normally.

Note: At the time of the abnormal end, the IMS TM backs out database changes, so the client should
restart the transaction.

Guideline: For deadlock situations you should define the transaction as INIT STATUS GROUP B, which
allows the application program to regain control after a deadlock with a BC status code (instead of
terminating with a U0777 abend). The server program can regain control after the deadlock and notify the
client while the connection is still available.

Implicit-mode support for ROLB processing
If a server program issues the IMS ROLB call, all database changes are reversed, and all output messages
are erased from the IMS message queue. However, the client is not automatically notified of this action
and will (when the transaction completes normally) receive a CSMOKY message, indicating normal
completion.

As a result, for transactions that conditionally issue the ROLB call, the server should send a message
to the client indicating whether the ROLB command was issued. Otherwise, the client might incorrectly
interpret the CSMOKY message to mean that database changes have been made (when in fact, the
message simply denotes successful termination of the transaction).

Restrictions for operation of the Listener and the Assist module
• Transactions must be defined as MODE=SNGL in the IMS TRANSACT macro; this ensures that the

database buffers are emptied (flushed) to direct access storage when the second and subsequent GU
calls are issued.

• Transactions must not reference other systems (MSC is not supported).
• Transactions must not be conversational [that is, they must not use the IMS Scratch Pad Area (SPA)].

28 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Chapter 4. How to write an IMS TCP/IP client
program

When writing an IMS TCP/IP client program, the programmer must follow conventions established by the
IMS Listener and by the IMS Assist module (if used). This information describes the call sequences and
input/output data formats to be used by the client program. For server programming, see Chapter 5, “How
to write an IMS TCP/IP server program,” on page 37.

In this information, a "client" is typically a TCP/IP host that is requesting the services of an IMS message
processing program (MPP). This is considered to be the normal case. However, in some situations, an MPP
can start as a server and then (because it needs the services of another program) switch roles from server
to client.

In this information, the client will be assumed to be the TCP/IP host and the server, the IMS MPP.

General client program logic flow
For both explicit- and implicit-mode clients the logic flow is essentially the same:

The client initiates the request for a specific IMS MPP server by communicating with MVS TCP/IP, which
passes the request on to the IMS Listener. The Listener schedules the transaction and the client then
exchanges application data with the server. When the transaction is complete, the connection is closed;
each client request for an IMS transaction requires a new TCP/IP connection.

The following topics provide more details about the programming requirements for explicit-mode and
implicit-mode clients, respectively.

Explicit-mode client program logic flow
When the client requests the services of an explicit-mode server, the only protocol imposed by IMS
TCP/IP is that the client must begin by establishing TCP/IP connectivity and sending a transaction-request
message (TRM).

The Listener uses contents of the transaction-request message (TRM) to determine which transaction
to schedule. If the request is not accepted (for example, because of failure to pass the security exit,
or because the transaction was stopped by the IMS master terminal operator), the Listener returns
a request-status message (RSM) to the client with an indication of the cause of failure. (See “Request-
status message segment” on page 34 for the format of the request-status message).

Once an explicit-mode client and server are in communication, there is no predefined input/output
protocol. Rules of the conversation are established by agreement between the two programs. Any number
of READ/WRITE calls can be issued. Upon termination, the server program should commit any database
changes, notify the server of successful completion, and close the socket.

It is suggested that, when all database updates have been committed, the server notify the client by
sending a "success" message to the client. This notifies the client that the transaction has completed
properly and that all database updates have been committed. Unless such a message is sent, the client
has no way of knowing that the transaction completed properly.

Explicit-mode client call sequence
The call sequence to be used by an explicit-mode client program is:

Call
Explanation of Function

INITAPI
Open the interface. (Required only for client programs that use MVS TCP/IP socket calls).

© Copyright IBM Corp. 2000, 2021 29

SOCKET
Obtain a socket descriptor.

CONNECT
Request connection to the IMS Listener port.

WRITE
Send a transaction-request message (TRM).

READ
Test for successful transaction initiation. 10

WRITE/READ
Explicit-mode transactions can issue any number of READ or WRITE socket call sequences.

READ
Ensure that the server ended normally and that the database changes are committed.

CLOSE
Terminate the connection and release socket resources.

Explicit-mode application data
The following information describes explicit-mode application data.

Format
Explicit-mode clients must initiate the connection with the server by sending the transaction-request
message (TRM) to the IMS host. The format of this message is defined later in this topic. Explicit-mode
application data is formatted according to agreement between client and server. Explicit-mode imposes
no application data format requirements.

Data translation
In explicit-mode, application data translation from ASCII to EBCDIC (if necessary) is the responsibility of
the client and server programs. Data is not translated by the IMS TCP/IP feature.

Network byte order
Fixed-point binary integers (used for segment lengths in TRM and RSM) are specified using the TCP/IP
network byte ordering convention (big-endian notation). This means that if the high-order byte is stored
at address n, the low-order byte is stored at address n+1. (Little-endian notation stores the other way
around).

MVS also uses the big-endian convention. Because this is the same as the network convention, IMS
TCP/IP MPP's should not need to convert data from little-endian to big-endian notation. If the client uses
little-endian notation, it is responsible for the conversion.

End-of-message indicator
IMS TCP/IP does not define an End-of-message indicator for explicit-mode messages.

Implicit-mode client logic flow
When the client requests the services of an implicit-mode client, the protocol is predefined by IMS TCP/IP.

10 If the Listener is unable to initiate the transaction, it sends a request-status message (RSM) to the client
indicating the reason for failure. Therefore, the client must be prepared to receive that message. It is
suggested that a convention be established that the server initiate the conversation by sending an opening
message. By following this convention, the client will receive either positive or negative notification of
transaction status before initiating application data exchange.

30 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

The client requests an IMS MPP by sending the transaction-request message (TRM). (See “Transaction-
request message segment (client to Listener)” on page 33 for the format of the TRM.) The TRM includes
the name of the transaction the Listener is to schedule.

If the transaction cannot be scheduled (for example, because of failure to pass the security exit,
or because the transaction was stopped by the IMS master terminal operator), the Listener returns
the request-status message with an indication of the cause of failure. (See “Request-status message
segment” on page 34 for the format of the request-status message).

For implicit-mode applications, the input data stream consists of the TRM, immediately followed by all
segments of application data and an end-of message-segment. The Listener uses the TRM contents to
schedule the server and then places the TIM and all of the application data on the IMS message queue for
retrieval by the Assist module.

Implicit-mode transactions are limited to one multisegment input message and one multisegment output
message. In other words, implicit-mode applications cannot enter into conversations.

When the transaction is complete, the IMS Assist module sends a complete-status message (CSMOKY)
segment to the client. If the client receives this message, the client can safely assume that the database
changes have been committed. If the client doesn't receive this message, the client cannot determine
what has happened. The transaction might have completed normally and database changes committed,
or the transaction might have failed with database changes backed out. For this reason, clients that work
with implicit mode servers should include application logic that, upon failure to receive the CSMOKY
message segment, reestablishes contact with IMS and confirms the success of the previously submitted
update.

Implicit-mode client call sequence
The call sequence to be used by an implicit-mode client program is:

Call
Explanation of Function

INITAPI
Open the interface. (Required only for client programs that use MVS TCP/IP Sockets calls).

SOCKET
Obtain a socket descriptor.

CONNECT
Request connection to the IMS Listener port.

WRITE
Send a transaction-request message (TRM).

WRITE
Send server input data formatted as IMS segments.

READ
Receive response.

• If the request was rejected, a request-status message (RSM) will be received.
• If the transaction was scheduled and executed properly, application data will be received.

Thus, logic in the client must test the output message for the characters *REQSTS* to distinguish
between application data and a request-status message (RSM).

READ
Upon successful completion of the database updates, the Assist module sends a complete-status
message (*CSMOKY*) to the client, indicating that the transaction has completed successfully.

If this message is not received, the client must assume that the application failed to complete
properly; in this case, a return code of –1 and ERRNO (typically set to 54) will indicate that application
failed. The client must take whatever action is appropriate (for example, reschedule the transaction,
resynchronize data).

Chapter 4. How to write an IMS TCP/IP client program 31

CLOSE
Terminate the connection and release the socket resources.

Implicit-mode application data stream
The following information describes the types of implicit-mode application data streams.

Client-to-server data stream
In implicit mode, the client sends the following data stream:

llzz transaction-request message (TRM) llzz application data segment 1 llzz application data segment 2
(optional) llzz ... llzz application data segment n (optional) 04zz end-of-message segment

WHERE:
ll

The length in bytes of this data segment in binary.
zz

Reserved; must be set to binary.
transaction-request message (TRM)

The initial client request.
application data segment 1 – n

Data to be passed to the server application.
end of message segment

A segment with no data. Therefore, its segment length is 04 (2 for the length field plus 2 for the
reserved field.)

Server-to-client data stream
Data received by the client is formatted (by the Assist module) as above. It consists of n segments of
application data including the CSM segment, followed by an end-of-message segment.

Implicit-mode application data
The following information describes implicit-mode application data.

Format
Data exchanged between implicit-mode client and server is transmitted in a format that resembles an IMS
message segment. These segments have the following format: 11

Field Format Description

Length H Length of the data segment (including this field)

Reserved (zz) CL2 Reserved field

Data CLn Client-supplied data

The length field contains the total length of the message in binary. The length (ll) includes the length of
the ll and zz fields.

Data translation
The IMS Listener tests the initial input data string (the TRM) to determine whether the terminal is
transmitting in ASCII. If the terminal is transmitting in ASCII, and the transaction is defined as implicit-

11 This example uses Assembly language notation. See Chapter 7, “CALL instruction application programming
interface,” on page 51 for COBOL and PL/I equivalents.

32 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

mode in the TRANSACTION configuration statement, the Listener translates the ASCII application data
into EBCDIC.

Note: When data translation takes place, the entire application data portion of the segment is translated
from ASCII to EBCDIC, and vice versa; therefore, the segment should contain only printable characters
that are common to both character sets. (For example, the EBCDIC cent sign and the ASCII left square
bracket are both printable in their respective native environments, but they are not translated because
they do not have an equivalent in the other character set.)

End-of-message segment
The last segment in a message (either sent by the client, or received from the server) is indicated by an
end-of-message (EOM) segment. (See “End-of-message segment (EOM)” on page 35).

• Implicit-mode messages sent by the client are received by the Listener. When the client program sends
an EOM segment, the Listener interprets the EOM as an indication that no more message segments are
to be received and inserts the segments onto the IMS message queue.

• Implicit-mode messages received by the client are actually written by the Assist module on behalf
of the server program. When the server program sends application data to the client (using the ISRT
call), the Assist module intercepts the output data and accumulates it in an output buffer. When the
server program issues a subsequent GU to the I/O PCB, the Assist module interprets the GU as an
indication that the server has inserted the last segment for that message. The Assist module then adds
an end-of-message segment to the output data and issues WRITE commands, which transmit the data
to the client. (The client program should test for the EOM segment to determine when the last segment
of the message has been sent by the server program.)

IMS TCP/IP message segment formats
The client sends or receives several types of message segments whose formats are defined by the
Listener and the Assist module.

• Transaction-request message segment (TRM)
• Request-status message segment (RSM)
• Complete-status message segment (CSMOKY)
• End-of-message segment (EOM)

The following paragraphs describe the formats for each of these segments:

Transaction-request message segment (client to Listener)
To initiate a connection with an IMS server, the client first issues a transaction-request message segment
(TRM), which tells the Listener which transaction to schedule.

The format of the transaction-request message segment (TRM) is:

Field Format Meaning

TRMLen H Length of the segment (in binary) including this
field. This field is sent in network byte order.

TRMRsv CL2 Reserved

TRMId CL8 Identifying string. Always *TRNREQ*. If the client
data stream will be sent in ASCII, the TRMId field
should also be transmitted in ASCII because the
Listener uses this field to determine whether ASCII
to EBCDIC translation is required.

Chapter 4. How to write an IMS TCP/IP client program 33

Field Format Meaning

TRMTrnCod CL8 The transaction code (TRANCODE) of the IMS
transaction to be started. It must not begin with
a / character; it must follow the naming rules for
IMS transactions. If the Listener has determined
that data will be transmitted in ASCII, it translates
the transaction code to EBCDIC before any further
processing is done.

TRMUsrDat XLn This variable-length field contains client data that
is passed directly to the security exit without
translation.

Request-status message segment
If a transaction request is accepted, the IMS Listener does not send the request-status message segment;
if the transaction request is rejected, the IMS Listener sends a request-status message segment (RSM) to
the client. This segment has the following format:

Field Format Description

RSMLen H Length of message (in binary), including this field.

RSMRsv CL2 Reserved

RSMId CL8 Identifying string. Always *REQSTS*. This field is
translated to ASCII if the Listener has determined
that the client is transmitting in ASCII.

F Return code, sent in
network byte order. Set
to nonzero (for example,
4, 8, 12) to indicate an
error. The nonzero value
is further explained
by the reason code
(RSMRsnCod).

RSMRsnCod F Reason Code, sent in network byte order. Reason
codes 0 — 100 are reserved for use by the IMS
Listener. Codes greater than 100 can be assigned
by the user-written security exit.

Request-status message reason codes
If the IMS Listener sends a request-status message (RSM) segment to the client (indicating that it is
unable to complete the processing of the client's transaction-request message (TRM), it sets the return
and reason code in the RSM.

• If the security exit rejects a transaction request, it sets the return code and reason code, and returns
control to the Listener, which sends the request-status message segment to the client.

• If the Listener detects other errors that cause a request to be rejected, it sets a return code of 8 and a
reason code from the following list.
1

The transaction was not defined to the IMS Listener.
2

An IMS error occurred and the transaction was unable to be started.

34 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

3
The transaction failed to perform the TAKESOCKET call within the 3 minute time frame.

4
The input buffer is full as the client has sent more than 32KB of data for an implicit transaction.

5
An AIB error occurred when the IMS Listener tried to confirm if the transaction was available to be
started.

6
The transaction is not defined to IMS or is unavailable to be started.

7
The transaction-request message (TRM) segment was not in the correct format.

9
The application data buffer for the Client-to-Server Data Stream contains an invalid value for the
data segment length.

100 up
Reason codes of 100 or higher are defined by the user-supplied security exit.

Complete-status message segment
The complete-status message segment is sent by the Assist module to indicate the successful completion
of an implicit-mode transaction, including the fact that database updates have been committed. The
format of the complete-status message segment is:

Field Format Description

Length H Length of the data segment (in binary) including
this field

CSMRsv H Reserved field; must be set to zero

CSMId CL8 *CSMOKY* This field is translated to ASCII if the
client is transmitting in ASCII.

End-of-message segment (EOM)
The end-of-message segment is defined as an IMS-type segment (with llzz fields) but no application data.
Thus, the EOM segment has an llzz field of '0400'; 04 is the length of the llzz field.

PL/I coding
PL/I programmers should note that (although the segments exchanged between the Listener and implicit-
mode servers resemble IMS segments) the segments are actually sent by TCP/IP socket calls and do not
necessarily follow the standard IMS convention for the PL/I language interface. Specifically, the length
field in a segment (TRM or RSM), which is passed via a TCP/IP socket call, must be a halfword (FIXED
BIN(15)) and not a fullword.

Chapter 4. How to write an IMS TCP/IP client program 35

36 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Chapter 5. How to write an IMS TCP/IP server
program

When writing an IMS TCP/IP server program, the programmer must follow conventions established by the
IMS Listener; by the IMS Assist module (if the server program uses it); and by the TCP/IP client. This topic
describes the call sequences and input/output formats necessary for communication between a TCP/IP
client program and an IMS server program. (See Chapter 4, “How to write an IMS TCP/IP client program,”
on page 29 for a discussion of client programming).

General server program logic flow
An IMS TCP/IP server program is executed in response to a transaction request from a TCP/IP host. The
server program can either explicitly issue TCP/IP socket calls, or implicitly issue them through the IMS
Assist module. However, the same TCP/IP functions are completed in either case.

The following topics describe the server logic flow for each mode.

Explicit-mode server program logic flow
When an explicit-mode server begins execution, the Listener has received the transaction-request
message (TRM) from the client and has inserted the transaction-initiation message (TIM) to the IMS
message queue. The Listener has also issued a GIVESOCKET call to pass the connection to the server.

The server's first action is to obtain the TIM from the IMS message queue. This message contains the
information needed to issue the INITAPI and TAKESOCKET calls.

Once the server has issued the TAKESOCKET call, the connection is between client and server; the two
can now communicate directly using socket READ/WRITE calls. The number of reads/writes, and the
format of the data exchanged, is determined by agreement between the two programs.

At the end of processing a client's request, the application program should follow the IMS DC
programming standard of issuing another GU to the IO/PCB. This informs IMS that the database changes
should be committed, and that the database buffers should be emptied (flushed).

Note: For this reason, a transaction invoked by a TCP/IP client should be defined (by the IMS-gen
TRANSACT macro) as MODE=SNGL.

Explicit-mode call sequence
The suggested call sequence for an explicit-mode server follows. See Chapter 7, “CALL instruction
application programming interface,” on page 51 for the call syntax of the socket calls.

Server call
Explanation of Function

CALL CBLTDLI (GU) I/O PCB
Obtain transaction-initiation message (TIM) from IMS message queue.

INITAPI
Initialize the connection with TCP/IP.
Parameter

Meaning
ADSNAME

Server address space (TIMSrvAddrSpc from the TIM)
SUBTASK

Server task ID (TIMSrvTaskID from the TIM)

© Copyright IBM Corp. 2000, 2021 37

TCPNAME
TCP address space (TIMTCPAddrSpc from the TIM)

TAKESOCKET
Accept the socket from the Listener.

Parameter
Meaning

CLIENT.name
Listener address space (TIMLstAddrSpc from the TIM)

CLIENT.task
Listener task ID (TIMLstTaskID from the TIM)

SOCRECV
Socket descriptor (TIMSktDesc from the TIM)

Note that the TAKESOCKET call returns a new socket descriptor which must be used for the rest of the
process. (Do not continue to use the descriptor passed by the Listener in TIMSktDesc.)

READ/WRITE
Exchange application data with the client.

Database calls
Read/write database records.

Note: TCP/IP and database calls can be intermixed.

GU
Force IMS synchronization point; update the database from the buffers.

WRITE
Send complete-status message to the client.

CLOSE
Shut down the socket and release resources associated with it.

TERMAPI
End processing on the call interface.

Explicit-mode application data
The following information describes explicit-mode application data.

Format
Other than the initial transaction-initiation message, explicit-mode imposes no restrictions on the format
of application data exchanged between client and server.

EBCDIC and ASCII data translation
If the TCP/IP host is transmitting ASCII data, explicit-mode servers are responsible for data translation
from EBCDIC to ASCII and from ASCII to EBCDIC. Data translation is not performed by IMS TCP/IP.
You can use the data translation subroutines (EZACIC04 and EZACIC05 or EZACIC14 and EZACIC15)
described in Chapter 7, “CALL instruction application programming interface,” on page 51 for this
purpose.

When the conversation is complete, the server should force an IMS commit and close the connection. This
causes IMS to complete the database updates. Explicit-mode server logic is responsible for notifying the
client of the success or failure of the commit process.

Transaction-initiation message segment
Once the server has been started, the first segment it receives from the message queue is the
transaction-initiation message (TIM) segment, which was created by the IMS Listener.

38 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Field Format Explanation

TIMLen 12 H The length of the transaction-
initiation message segment (in
binary) , including the length of
this field. (X'0038')

TIMRsv H Reserved field set to zero.
(X'0000').

TIMId CL8 Identifies the message as having
been created by the IMS Listener.
Always contains the characters
LISTNR.

TIMLstAddrSpc CL8 Listener address space name.
Used in server TAKESOCKET.

TIMLstTaskId CL8 Listener task ID. Used in server
TAKESOCKET.

TIMSrvAddrSpc CL8 Server address space name. Used
in server INITAPI. Server address
space IDs are generated by
the Listener and consist of the
2-character prefix specified in
the Listener configuration file
(Listener statement) followed
by a unique 6-character
hexadecimal number.

TIMSrvTaskID CL8 Server task ID. Used in server
INITAPI.

TIMSktDesc H Contains the descriptor of the
socket given by Listener. Used in
server TAKESOCKET.

TIMTCPAddrSpc CL8 The TCP/IP address space name
of TCP/IP. Used in INITAPI.

TIMDataType H Indicates the data type of the
client messages: ASCII(0) or
EBCDIC(1).

Program design considerations
• Because MVS TCP/IP ends the connection when a server MPP completes, the client has no way of

knowing that the database changes have been committed. Therefore, it is suggested that explicit-mode
servers send a message to the client confirming the COMMIT before terminating. (Implicit-mode servers
send the CSMOKY segment when the database changes have been committed.)

• When an explicit-mode server issues a ROLB command, the client has no automatic way of knowing that
the database updates have been rolled back. It is suggested, therefore, that the server send a message
to the client when a rollback call completes.

12 If you use PL/I, you must define the LLLL field as a binary fullword.

Chapter 5. How to write an IMS TCP/IP server program 39

I/O PCB explicit-mode server
When an IMS MPP issues a call for IMS TM services (like a GU or an ISRT), IMS returns information about
the results of the call in a control block called the I/O program control block (I/O PCB). The contents of
the I/O PCB are:
LTERM NAME

Blanks (8 bytes)
RESERVED

X'00' (2 bytes)
STATUS CODE

See “Status codes” on page 40 (2 bytes)
DATE/TIME

Undefined (8 bytes)
INPUT MSG. SEQ. #

Undefined (4 bytes)
MESSAGE OUTPUT DESC. NAME

Blanks (8 bytes)
USERID

PSBname of Listener (8 bytes)

Status codes
The I/O PCB status code is set by IMS in response to the server GU for the TIM. A status code of bb
indicates successful completion of the GU call. Because the only data explicit-mode servers receive from
the message queue is the TIM, the only call issued by the server is a GU, requesting a new TIM. Thus, the
only status codes an explicit-mode server should receive are bb, which indicates successful completion
of the GU; and QC, which indicates that there are no more messages on the message queue for that
transaction. In response to the QC status code, the server program should end normally.

Explicit-mode server PL/I programming considerations
PL/I programmers should note that I/O areas used to retrieve IMS segments must follow standard IMS
conventions. That is, the length field for the TIM segment must be defined as a fullword (FIXED BIN(31)).

Implicit-mode server program logic flow
An implicit-mode server must perform all of the functions previously described for an explicit-mode
server (see “Explicit-mode server program logic flow” on page 37). However, the IMS Assist module
issues the TCP/IP calls on behalf of the server program; consequently, the implicit-mode application
programmer need issue only standard IMS Input/Output calls.

Implicit-mode server call sequence
When writing an implicit-mode program, you must call the IMS Assist module (CBLADLI, PLIADLI,
ASMADLI, CADLI, as appropriate for the language you are using) instead of the conventional IMS
equivalent (CBLTDLI, PLITDLI, ASMTDLI, CTDLI). This will cause the I/O PCB calls to be intercepted
and processed (if necessary) by the Assist module. The Assist module will pass database calls directly to
IMS for processing; it will intercept I/O PCB calls and issue the appropriate sockets calls. A sample call
sequence (using COBOL syntax) for an implicit-mode server follows:

IMS Server Call
Resulting Assist Module Function

CALL CBLADLI (GU) I/O PCB
Issue CALL CBLTDLI (GU) to obtain the (TIM).

40 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

CALL CBLADLI (GN) I/O PCB
(optional) Issue CALL CBLTDLI (GN), which returns a subsequent segment of client input data for each
call.

CALL CBLADLI
Read/write database records. 13

CALL CBLADLI (ISRT) I/O PCB
Store segments in the sockets output buffer.

CALL CBLADLI (GU) I/O PCB
Issue WRITE to empty output buffers.

Implicit-mode application data
The following information describes implicit-mode application data.

Format
All data exchanged between the client and an implicit-mode server is formatted into IMS segments. Each
data segment has the following format:

Field Format Description

Length H Length of the data segment (in
binary) including this field.

Reserved H Reserved field; must be set to
zero.

Data CLn Application data.

Data translation
Translation of input data (when necessary) is done by the Listener. As a result, all data on the IMS
message queue is in EBCDIC; output data is translated (when necessary) by the Assist module.

Note that when data translation takes place, the entire application data portion of the segment is
translated from ASCII to EBCDIC, and vice versa; therefore, the segment should contain only printable
characters common to both character sets. (For example, the EBCDIC cent sign and the ASCII left bracket
are both printable in their respective environments but are not translated because they do not have an
equivalent in the other character set.)

End-of-message segment
The last segment in a message (either sent by the client, or received from the server) is indicated by an
end-of-message (EOM) segment. (See “End-of-message segment (EOM)” on page 35).

• Implicit-mode messages sent by the client are received by the Listener and inserted onto the IMS
message queue. The end-of-message segment indicates to the Listener that there are no more
segments to be inserted for this message.

Note: The server program will not receive the EOM segment; it will receive a QD status code, indicating
that there are no more segments for this message.

• Implicit-mode messages to be sent by the server are actually written by the Assist module on behalf
of the server program. When the server program sends application data to the client (using the ISRT
call), the Assist module intercepts the output data and accumulates it in an output buffer. When the
server program issues a subsequent GU to the I/O PCB, the Assist module interprets the GU as an
indication that the server has inserted the last segment for that message. The Assist module then adds
an end-of-message segment to the output data and issues WRITE commands, which transmit the data
to the client.

13 Database PCB and I/O PCB calls can be intermixed.

Chapter 5. How to write an IMS TCP/IP server program 41

Note: The server program should not attempt to insert an EOM segment to the I/O PCB.

Programming to the Assist module interface
Programs written to the Assist module interface are very similar (in terms of I/O calls) to conventional IMS
Transaction Manager (TM) MPPs.

• To communicate with IMS TM, use the following calls (depending upon programming language)
— CBLADLI, PLIADLI, ASMADLI, or CADLI — instead of CBLTDLI, PLITDLI, ASMTDLI, and CADLI,
respectively.

• Use the same parameters as with the IMS TM counterparts.
• The first IMS call to the I/O PCB must be GU. Subsequent IMS calls to the I/O PCB can be GN and/or

ISRT (with intervening database calls, as appropriate).
• When the transaction is complete, the server program should issue another GU to the I/O PCB to finalize

processing of the present message. If the server program receives a bb status code, (indicating another
message has been received for that program), it should loop back and process that message. Note that
the Assist module will have closed the previous connection and opened a new connection associated
with the new message. When the GU returns a QC status code, no more messages have been received
for that program and the program should end.

A set of one GU, one or more GN calls, and one or more ISRT calls to the I/O PCB (with intervening
database calls, as required) constitute a transaction. The Assist module interprets each GU as the start
of a new transaction.

• The PURG call cannot be used to indicate end-of-message; the server should not issue PURG calls to
the I/O PCB.

• The Assist module GU reads the TIM into the I/O area defined in the server program; consequently, the
I/O area you define in the server must be at least 56 bytes in length (the length of the TIM).

• If the server program attempts to insert more than 32KB, the Assist module flags this as an error by
terminating processing and returning a status code of ZZ.

Implicit-mode server PL/I programming considerations
PL/I programmers should note that I/O areas passed to the Assist module must follow standard IMS
conventions. That is, the length field for a segment must be defined as a fullword (FIXED BIN(31)). This
applies to both input and output data segments; however, the actual segment that is received from and
sent to the client uses a halfword (FIXED BIN(15)) length field. Thus, the messages exchanged between
the client and server are programming-language independent.

Implicit-mode server C language programming considerations
The following statements are required in IMS implicit-mode servers written in C language:

 #pragma runopts(env(IMS),plist(IMS))
 #pragma linkage(cadli, OS)

This is in addition to the standard requirements for using C language programs in IMS.

I/O PCB implicit-mode server
When an IMS MPP issues a call for IMS TM services (like a GU or an ISRT), IMS returns information about
the results of the call in a control block called the I/O program control block (I/O PCB). When using the
Assist module, the contents of the I/O PCB are:
LTERM NAME

Blanks (8 bytes)
RESERVED

See “Status codes” on page 43 (2 bytes)

42 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

STATUS CODE
See “Status codes” on page 43 (2 bytes)

DATE/TIME
Undefined (8 bytes)

INPUT MSG. SEQ. #
Undefined (4 bytes)

MESSAGE OUTPUT DESC. NAME
Blanks (8 bytes)

USERID
PSBname of Listener (8 bytes)

Status codes
The I/O PCB status code is set by IMS in response to the IMS calls that the Assist module makes on
behalf of the server. For example, GU and GN calls usually result in bb, QC, or QD status codes. However,
when the Assist module detects a TCP/IP error, it sets the status code field of the I/O PCB to ZZ with
further information about the error in the reserved field of the I/O PCB. This field should be initially tested
as a signed, fixed binary halfword:

• If the halfword is positive, then a socket error has occurred, and the field should continue to be treated
as a signed fixed binary halfword. The field contains the 2 low-order bytes from the ERRNO resulting
from the socket call. (See Appendix A, “Return codes,” on page 267).

• If the halfword is negative, then an IMS or other type of error has occurred, and the field should be
treated as a fixed-length, 2-byte character string containing one of the following information:
Code

Meaning
EA

A call that used the AIB interface to determine the I/O PCB address failed.
EB

The output buffer is full. An attempt was made to insert (ISRT) more than 32KB (including the
segment length and reserved bytes) to be sent to the client.

EC
A QD status code was received in response to a GU or ROLB call when attempting to retrieve the first
segment of data after the transaction-initiation message (TIM) segment. This implies that the client
sent only the TIM segment followed by an end-of-message segment with no actual data segments.

Chapter 5. How to write an IMS TCP/IP server program 43

44 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Chapter 6. How to customize and operate the IMS
Listener

The IMS Listener is an IMS batch message program (BMP) whose main purpose is to validate connection
requests from TCP/IP clients and to schedule IMS message processing programs (MPP) servers.

This topic describes the IMS Listener and the user-written security exit that can be used to validate
incoming transaction requests.

How to start the IMS Listener
The IMS Listener is executed as an MVS 'started task' using job control language (JCL) statements. Copy
the sample job in the hlq.SEZAINST(EZAIMSJL) to your system or recognized PROCLIB and modify it
to suit your conditions. The following information shows a sample of the JCL needed for the Listener
BMP. Note the STEPLIB statements pointing to MVS TCP/IP. Also note the EZAIMSJL G.LSTNCFG DD
statement points to the Listener configuration file. For more information on configuring the IMS Listener,
see “The IMS Listener configuration file” on page 46.

//EZAIMSJL PROC MBR=EZAIMSLN,PSB=EZAIMSLN,IMSID=IMS,CFG=TCPIMS,SOUT=A
//*
//LISTENER EXEC PROC=IMSBATCH,MBR=&MBR.,SOUT=&SOUT.,IMSID=&IMSID.,
// PSB=&PSB.,CPUTIME=1440
//G.STEPLIB DD DSN=IMSVS31.&SYS2.RESLIB,DISP=SHR
// DD DSN=IMSVS31.&SYS2.PGMLIB,DISP=SHR
// DD DSN=TCPIP.SEZALOAD,DISP=SHR
// DD DSN=TCPIP.SEZATCP,DISP=SHR
//G.LSTNCFG DD DSN=TCPIP.LSTNCFG(&CFG.),DISP=SHR
//G.SYSPRINT DD SYSOUT=&SOUT,DCB=(LRECL=137,RECFM=VBA,BLKSIZE=1374),
// SPACE=(141,(2500,100),RLSE,,ROUND)

Figure 11. JCL: Sample run Listener procedure

Once you have configured your JCL, you can start the Listener using the MVS START command. The basic
syntax and parameters of this command are:

START procname

. identifier

procname
The name of the cataloged procedure that defines the IMS Listener job to be started.

identifier
A user-determined name which, with the procedure name, (procname) uniquely identifies the started
job. This name can be up to 8 characters long with the first character being alphabetic. If the identifier
is omitted, MVS automatically uses the procedure name as the identifier.

How to stop the IMS Listener
The Listener is normally ended by issuing an MVS MODIFY command. The syntax and parameters of this
command are:

MODIFY
procname ,

identifier , STOP

© Copyright IBM Corp. 2000, 2021 45

procname
The name of the cataloged procedure that was used to start the Listener. This is required only if an
identifier that was different from procname was specified with the START command when the Listener
was started.

identifier
The user-determined identifier used on the START command when the Listener was started. If an
explicit identifier was not specified (on the START command), MVS automatically uses the procedure
name (procname) on the START command as the default identifier.

stop
Stops the Listener.

On receipt of a MODIFY command, the Listener closes the socket bound to the listening port so that no
new requests can be accepted. It ends once all other sockets have been closed following acceptance of
each socket by the corresponding server.

As a BMP, the Listener can be forcibly ended by issuing the IMS STOP REGION command with the
ABDUMP option.

The IMS Listener configuration file
The IMS Listener obtains startup parameters from a configuration file. In the EZAIMSJL G.LSTNCFG
DD statement points to the Listener configuration file. This statement will be in the JCL sample you
customize.

The configuration file contains three types of statements which must appear in the following order:

1. TCPIP statement
2. LISTENER statement
3. TRANSACTION statements

The following information describes each of the configuration statements and their respective
parameters.

TCPIP statement
Description: This statement is required and is used to specify the name of the TCP/IP address space.

TCPIP ADDRSPC=name

ADDRSPC= name
Specifies the name of the TCP/IP address space. The name can be 1 to 8 characters long, consisting of
the numbers 0–9, the letters A–Z, and the characters $, @, and #.

LISTENER statement
Description: This statement is required. It is used to specify configuration information used by the IMS
Listener.

LISTENER PORT=port MAXTRANS=maxtrans MAXACTSKT=maxskt

ADDRSPCPFX=prefix
BACKLOG=10

BACKLOG=backlog

PORT= port
Port number that the Listener binds to for connection requests. Use an integer between 0 and 65535,
inclusive.

46 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

MAXTRANS= maxtrans
The maximum number of TRANSACTION statements to be processed in the configuration file. Use an
integer between 1 and 32767, inclusive.

MAXACTSKT= maxskt
The maximum number of sockets the Listener can have open awaiting an MPP TAKESOCKET at one
time. This value is an integer from 1 to 2000, inclusive. The number includes the socket bound to the
port through which it accepts incoming requests.

ADDRSPCPFX= prefix
One or two characters (consisting of the numbers 0–9, the letters A–Z, and the characters $, @, and
#) used in generating unique identifiers for started IMS transactions.

BACKLOG= backlog
This parameter is optional and is used to specify the length of the backlog queue maintained in TCP/IP
for connection requests that have not yet been assigned sockets by the Listener. Use an unsigned
number from 1 to 32767 inclusive. The default value is 10.

Tip: The backlog value specified on the listen call cannot be larger than the value configured by the
SOMAXCONN statement in the stack's TCPIP PROFILE (the default value is 10), no error is returned if
a larger backlog is requested. If you want a larger backlog, update the SOMAXCONN statement. See
the z/OS Communications Server: IP Configuration Reference for details.

TRANSACTION statement
Description: This statement specifies which transactions can be started by the Listener. One statement
is required for each transaction that can be initiated by a TCP/IP-connected client.

Note that the transactions named here are subject to limitations:

• They must be defined to IMS as MODE=SNGL in the IMS TRANSACT macro; this will ensure that the
database buffers are emptied (flushed) to direct access storage when the second and subsequent GU
calls are issued.

• They must not be IMS conversational transactions.
• They cannot name transactions that are executed in a remote Multiple Systems Coupling (MSC)

environment.
• They must not use Message Format Services for messages to the client.

TRANSACTION NAME=transid TYPE= EXPLICIT

IMPLICIT

NAME= transid
The name of an IMS transaction that is designed to interact with a TCP/IP-connected program. This
parameter must be 1 to 8 characters long, containing alphanumeric characters, or the characters @,
$, and #.

TYPE=
This parameter specifies whether the transaction uses the IMS Assist module. It must specify either
EXPLICIT or IMPLICIT.

The IMS Listener security exit
The IMS Listener includes an exit (IMSLSECX), which can be programmed by the user to perform a
security check on the incoming transaction-request. This Listener exit can be designed to validate the
contents of the UserData field in the transaction request message.

To use the user-supplied security exit, you must define an entry point named IMSLSECX. If a module with
this name is link-edited with the Listener (EZAIMSLN) load module, the security exit is called as part of
transaction verification. The security exit is called using standard MVS linkage with register 1 (R1) pointing
to the parameter list, shown in Table 4 on page 48. Note that the security exit must have the attribute
AMODE(31).

Chapter 6. How to customize and operate the IMS Listener 47

The exit returns 2 indicators: a return code and a reason code. The Listener uses the return code
to determine whether to honor the request. Both the return code and the reason code are passed
back to the client. Data passed in the UserData field is not translated from ASCII to EBCDIC; this
translation is the responsibility of the security exit. (EZACIC05 and EZACIC04 can be used to accomplish
translation between ASCII and EBCDIC. See CALL instructions in z/OS Communications Server: IP
Sockets Application Programming Interface Guide and Reference for a description of these utilities.)

Table 4. Format of data passed to the security exit

Field Format Description

IpAddr F The address of a fullword containing the client's IP
address.

Port H The address of a halfword containing the client's
port number.

TransNam CL8 The address of an 8-character string defining the
name of the requested transaction.

DataType H The address of a halfword containing the data type
(0 if ASCII or 1 if EBCDIC).

DataLen F The address of a fullword containing the length of
the user data.

Userdata XLn The address of the user-supplied data.

RetnCode F The address of a fullword set by the security exit
to indicate the return status. Set to nonzero (4, 8,
12, ...) to indicate an error.

ReasnCode F The address of a fullword set by the security exit
as a reason code associated with the value of the
return code. Reason codes 0–100 are reserved
for use by the Listener. The security exit can use
reason codes greater than 100.

TCP/IP services definitions
To run IMS, you need to modify the tcpip.PROFILE.TCPIP data set and the hlq.TCPIP.DATA data set that
are part of the TCP/IP Services configuration file.

Guideline: In this information, the abbreviation hlq stands for an installation-dependent high level
qualifier which you must supply.

The hlq.PROFILE.TCPIP data set
You define the hlq.PROFILE.TCPIP data set. In it, you must provide entries for the IMS socket Listener
started task name in the PORT statement, as shown in Figure 12 on page 49.

The format for the PORT statement is:

port_number TCP IMS_socket_Listener_jobname

As an example, assume you want to define two different IMS control regions. Create a different line for
each port that you want to reserve. Figure 12 on page 49 shows 2 entries, allocating port number 4000
for SERVA, and port number 4001 for SERVB. SERVA and SERVB are the names of the IMS socket Listener
started task names.

These 2 entries reserve port 4000 for exclusive use by SERVA and port 4001 for exclusive use by SERVB.
The Listener transactions for SERVA and SERVB should be bound to ports 4000 and 4001 respectively.
Other applications that want to access TCP/IP on MVS are prevented from using these ports.

48 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Ports that are not defined in the PORT statement can be used by any application, including SERVA and
SERVB if they need other ports.

 ;
 ; hlq.PROFILE.TCPIP
 ; ===================
 ;
 ; This is a sample configuration file for the TCPIP address space.
 ; For more information about this file, see "Configuring the TCPIP
 ; Address Space" and "Configuring the Telnet Server" in the Planning and
 ; Customization Manual.

 ; --
 ; Reserve PORTs for the following servers.
 ;
 ; NOTE: A port that is not reserved in this list can be used by
 ; any user. If you have TCP/IP hosts in your network that
 ; reserve ports in the range 1-1023 for privileged
 ; applications, you should reserve them here to prevent users
 ; from using them.
 PORT

 4000 TCP SERVA ; IMS Port for SERVA
 4001 TCP SERVB ; IMS Port for SERVB

Figure 12. Definition of the TCP/IP profile

The hlq.TCPIP.DATA data set
For IMS, you do not have to make any extra entries in hlq.TCPIP.DATA. However, you need to check the
TCPIPJOBNAME parameter that was entered during TCP/IP Services setup. This parameter is the name
of the started procedure used to start the TCP/IP MVS address space. This must match the job name in
the Listener configuration file TCPIP statement, as described in “TCPIP statement” on page 46. In the
example shown in Figure 13 on page 49, TCPIPJOBNAME is set to TCPV3. The default name is TCPIP.

 ;***
 ; *
 ; Name of Data Set: hlq.TCPIP.DATA *
 ; *
 ; This data, TCPIP.DATA, is used to specify configuration *
 ; information required by TCP/IP client programs. *
 ; *
 ;***
 ; TCPIPJOBNAME specifies the name of the started procedure which was
 ; used to start the TCP/IP address space. TCPIP is the default.
 ;
 TCPIPJOBNAME TCPV3

Figure 13. The TCPIPJOBNAME Parameter in the DATA data set

Chapter 6. How to customize and operate the IMS Listener 49

50 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Chapter 7. CALL instruction application programming
interface

This information describes the CALL instruction API for IPv4 or IPv6 socket applications. The following
topics are included:

• “CALL instruction API environmental restrictions and programming requirements” on page 51
• “CALL instruction API output register information” on page 52
• “CALL instruction API compatibility considerations” on page 52
• “CALL instruction application programming interface (API)” on page 53
• “Understanding COBOL, Assembler, and PL/I call formats” on page 53
• “Converting parameter descriptions” on page 54
• “Diagnosing problems in applications using the CALL instruction API” on page 54
• “CALL instruction API error messages and return codes” on page 54
• “Code CALL instructions” on page 55
• “Using data translation programs for socket call interface” on page 187
• “Call interface sample programs” on page 200

CALL instruction API environmental restrictions and programming
requirements

The following restrictions apply to both the Macro Socket API and the Callable Socket API:

Function Restriction

SRB mode These APIs can be invoked only in TCB mode (task mode).

Cross-memory mode These APIs can be invoked only in a non-cross-memory
environment (PASN=SASN=HASN).

Functional Recovery Routine (FRR) Do not invoke these APIs with an FRR set. This causes
system recovery routines to be bypassed and severely
damage the system.

Locks No locks should be held when issuing these calls.

INITAPI and TERMAPI socket commands The INITAPI and TERMAPI socket commands must be issued
under the same task.

Storage Storage acquired for the purpose of containing data returned
from a socket call must be obtained in the same key as the
application program status word (PSW) at the time of the
socket call.

Nested socket API calls You cannot issue nested API calls within the same task. That
is, if a request block (RB) issues a socket API call and is
interrupted by an interrupt request block (IRB) in an STIMER
exit, any additional socket API calls that the IRB attempts to
issue are detected and flagged as errors.

© Copyright IBM Corp. 2000, 2021 51

Function Restriction

Addressability mode (Amode)
considerations

The EZASOKET API can be invoked while the caller is in
either 31-bit or 24-bit Amode. However, if the application is
running in 24-bit addressability mode at the time of the call,
all addresses of parameters passed by the application must
be addressable in 31-bit Amode. This implies that even if the
addresses being passed reside in storage below the 16 MB
line (and therefore addressable by 24-bit Amode programs)
the high-order byte of these addresses needs to be 0.

Use of z/OS UNIX System Services Address spaces using the EZASOKET API should not use any
z/OS UNIX System Services socket API facilities such as z/OS
UNIX Assembler Callable Services or Language Environment®

for z/OS C/C++. Doing so can yield unpredictable results.

CALL instruction API output register information
When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Contains the entry point address EZASOKET

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-14

Unchanged
15

Used as a work register by the system.

If a caller depends on register contents to remain the same before and after issuing a service, the caller
must save the contents of a register before issuing the service and must restore them after the system
returns control.

CALL instruction API compatibility considerations
Unless noted in z/OS Communications Server: New Function Summary, an application program compiled
and link edited on a release of z/OS Communications Server IP can be used on higher level releases. That
is, the API is upward compatible.

Application programs that are compiled and link edited on a release of z/OS Communications Server IP
cannot be used on older releases. That is, the API is not downward compatible.

52 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

CALL instruction application programming interface (API)
This information describes the CALL instruction API for TCP/IP application programs written in the
COBOL, PL/I, or System/370 Assembly language. The format and parameters are described for each
socket call.

Note:

• Unless your program is running in a CICS environment, reentrant code and multithread applications are
not supported by this interface.

• For a PL/I program, include the following statement before your first call instruction.

 DCL EZASOKET ENTRY OPTIONS(ASM,INTER) EXT;

• If you use the CALL instruction from code that will run as a part of a CICS transaction, see the z/OS
Communications Server: IP CICS Sockets Guide for additional considerations.

• The Sockets Extended module (EZASOKET) is located in the hlq.SEZATCP(EZASOKET) load module and
should be resolved from there when it is processed by the binder. You can use the linkage editor MAP
parameter to produce the module map report to verify where EZASOKET is resolved.

Understanding COBOL, Assembler, and PL/I call formats
This API is invoked by calling the EZASOKET program and performs the same functions as the C language
calls. The parameters look different because of the differences in the programming languages.

COBOL language call format
The following syntax shows the 'EZASOKET' call format for COBOL language programs:

CALL ‘EZASOKET’ USING SOC-FUNCTION parm1, parm2, ..ERRNO,RETCODE.

SOC-FUNCTION
A 16-byte character field, left-aligned and padded on the right with blanks. Set to the name of the call.
SOC-FUNCTION is case specific. It must be in uppercase.

parmn
A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is used in most, but not all, of
the calls. It corresponds to the value returned by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET call. This value corresponds to
the normal return value of a C function.

Assembly language call format
The following syntax shows the EZASOKET call format for assembly language programs.

CALL EZASOKET,(SOC-FUNCTION,parm1, parm2, ... ERRNO,RETCODE),VL

PL/I language call format
The following syntax shows the EZASOKET call format for PL/I language programs:

CALL EZASOKET (SOC-FUNCTION parm1, parm2, ... ERRNO,RETCODE);

SOC-FUNCTION
A 16-byte character field, left-aligned and padded on the right with blanks. Set to the name of the call.

Chapter 7. CALL instruction application programming interface 53

parmn
A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is used in most, but not all, of
the calls. It corresponds to the value returned by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET call. This value corresponds to
the normal return value of a C function.

Converting parameter descriptions
The parameter descriptions in this information are written using the VS COBOL II PIC language syntax
and conventions, but you should use the syntax and conventions that are appropriate for the language you
want to use.

Figure 14 on page 54 shows examples of storage definition statements for COBOL, PL/I, and assembly
language programs.

VS COBOL II PIC

 PIC S9(4) BINARY HALFWORD BINARY VALUE
 PIC S9(8) BINARY FULLWORD BINARY VALUE
 PIC X(n) CHARACTER FIELD OF N BYTES

COBOL PIC

 PIC S9(4) COMP HALFWORD BINARY VALUE
 PIC S9(4) BINARY HALFWORD BINARY VALUE
 PIC S9(8) COMP FULLWORD BINARY VALUE
 PIC S9(8) BINARY FULLWORD BINARY VALUE
 PIC X(n) CHARACTER FIELD OF N BYTES

PL/I DECLARE STATEMENT

 DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE
 DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE
 DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

 DS H HALFWORD BINARY VALUE
 DS F FULLWORD BINARY VALUE
 DS CLn CHARACTER FIELD OF n BYTES

Figure 14. Storage definition statement examples

Diagnosing problems in applications using the CALL instruction
API

TCP/IP provides a trace facility that can be helpful in diagnosing problems in applications using the CALL
instruction API. The trace is implemented using the TCP/IP Component Trace (CTRACE) SOCKAPI trace
option. The SOCKAPI trace option allows all Call instruction socket API calls issued by an application
to be traced in the TCP/IP CTRACE. The SOCKAPI trace records include information such as the type of
socket call, input, and output parameters and return codes. This trace can be helpful in isolating failing
socket API calls and in determining the nature of the error or the history of socket API calls that might be
the cause of an error. For more information about the SOCKAPI trace option, see z/OS Communications
Server: IP Diagnosis Guide.

CALL instruction API error messages and return codes
For information about error messages, see z/OS Communications Server: IP Messages Volume 1 (EZA).

For information about error codes that are returned by TCP/IP, see Appendix A, “Return codes,” on page
267.

54 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Code CALL instructions
This information contains the description, syntax, parameters , and other related information for each call
instruction included in this API.

ACCEPT
A server issues the ACCEPT call to accept a connection request from a client. The call points to a socket
that was previously created with a SOCKET call and marked by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections.
2. Creates a new socket with the same properties as s, and returns its descriptor in RETCODE. The

original sockets remain available to the calling program to accept more connection requests.
3. The address of the client is returned in NAME for use by subsequent server calls.

Note:

• The blocking or nonblocking mode of a socket affects the operation of certain commands. The default
is blocking; nonblocking mode can be established by use of the FCNTL and IOCTL calls. When a socket
is in blocking mode, an I/O call waits for the completion of certain events. For example, a READ call will
block until the buffer contains input data. When an I/O call is issued:

– If the socket is blocking, program processing is suspended until the event completes.
– If the socket is nonblocking, program processing continues.

• If the queue has no pending connection requests, ACCEPT blocks the socket unless the socket is in
nonblocking mode. The socket can be set to nonblocking by calling FCNTL or IOCTL.

• When multiple socket calls are issued, a SELECT call can be issued prior to the ACCEPT to ensure that
a connection request is pending. Using this technique ensures that subsequent ACCEPT calls will not
block.

• TCP/IP does not provide a function for screening clients. As a result, it is up to the application program
to control which connection requests it accepts, but it can close a connection immediately after
discovering the identity of the client.

Table 5. ACCEPT call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 15 on page 56 shows an example of ACCEPT call instructions.

Chapter 7. CALL instruction application programming interface 55

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'ACCEPT'.
 01 S PIC 9(4) BINARY.
 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).
 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC X(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 15. ACCEPT call instructions example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing ACCEPT. Left-align the field and pad it on the right with blanks.
S

A halfword binary number specifying the descriptor of a socket that was previously created with a
SOCKET call. In a concurrent server, this is the socket upon which the server listens.

Parameter values returned to the application
NAME

An IPv4 socket address structure that contains the client’s socket address.
FAMILY

A halfword binary field specifying the IPv4 addressing family. The call returns the value decimal 2
for AF_INET.

PORT
A halfword binary field that is set to the client’s port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 IP address, in network byte order, of the
client’s host machine.

RESERVED
Specifies 8 bytes of binary zeros. This field is required, but not used.

An IPv6 socket address structure that contains the client’s socket address.
FAMILY

A halfword binary field specifying the IPv6 addressing family. For TCP/IP the value is decimal 19,
indicating AF_INET6.

PORT
A halfword binary field that is set to the client’s port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

56 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address, in network-byte-order, of the
client’s host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket number.

If the RETCODE value is negative, check the ERRNO field for an error number.

Value
Description

> 0
Successful call.

-1
Check ERRNO for an error code.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes the process of creating a
new socket.

The BIND socket command can specify the port or let the system choose the port. A listener program
should always bind to the same well-known port so that clients know the socket address to use when
issuing a CONNECT, SENDTO, or SENDMSG request.

In addition to the port, the application also specifies an IP address on the BIND socket command. Most
applications typically specify a value of 0 for the IP address, which allows these applications to accept
new TCP connections or receive UDP datagrams that arrive over any of the network interfaces of the local
host. This enables client applications to contact the application using any of the IP addresses associated
with the local host.

Alternatively, an application can indicate that it is interested in receiving only new TCP connections or
UDP datagrams that are targeted towards a specific IP address associated with the local host. This can be
accomplished by specifying the IP address in the appropriate field of the socket address structure passed
on the NAME parameter.

Tip: Even if an application specifies the value 0 for the IP address on the BIND, the system administrator
can override that value by specifying the BIND parameter on the PORT reservation statement in the
TCP/IP profile. The effect of this override is similar to the effect of the application specifying an explicit
IP address on the BIND macro. For more information, see z/OS Communications Server: IP Configuration
Reference.

Table 6. BIND call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 7. CALL instruction application programming interface 57

Table 6. BIND call requirements (continued)

Condition Requirement

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 16 on page 58 shows an example of BIND call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 16. BIND call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing BIND. The field is left-aligned and padded to the right with
blanks.

S
A halfword binary number specifying the socket descriptor for the socket to be bound.

NAME

See z/OS Communications Server: IP Sockets Application Programming Interface Guide and
Reference for more information.

Specifies the IPv4 socket address structure for the socket that is to be bound.

58 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

FAMILY
A halfword binary field specifying the IPv4 addressing family. The value is always set to decimal 2,
indicating AF_INET.

PORT
A halfword binary field that is set to the port number to which you want the socket to be bound.

Note: To determine the assigned port number, call the GETSOCKNAME command after calling the
BIND command.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 IP address (network byte order) of the socket
to be bound.

RESERVED
Specifies an 8-byte character field that is required but not used.

Specifies the IPv6 socket address structure for the socket that is to be bound.
FAMILY

A halfword binary field specifying the IPv6 addressing family. For TCP/IP the value is decimal 19,
indicating AF_INET6.

PORT
A halfword binary field that is set to the port number to which you want the socket to be bound.

Note: To determine the assigned port number, call the GETSOCKNAME command after calling the
BIND command.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address (network byte order) of the socket
to be bound.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and can be specified for any address types and scopes.
For a link scope IPv6-ADDRESS, SCOPE-ID can specify a link index which identifies a set of
interfaces. For all other address scopes, SCOPE-ID must be set to 0.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

BIND2ADDRSEL
The BIND2ADDRSEL call binds a socket to the local IP address that would be selected by the stack to
communicate with the input destination IP address.

Chapter 7. CALL instruction application programming interface 59

Use the BIND2ADDRSEL call when the application must verify that the local IP address assigned by the
stack meets its address selection criteria as specified by the IPV6_ADDR_PREFERENCES socket option
before the stack sends any packets to the remote host. In a TCP or UDP application, the BIND2ADDRSEL
call usually follows the SETSOCKOPT call with option IPV6_ADDR_PREFERENCES and precedes any
communication with a remote host.

Result: The stack attempts to select a local IP address according to your application preferences.
However, a successful BIND2ADDRSEL call does not guarantee that all of your source IP address
selection preferences were met.

Guidelines
• Use the SETSOCKOPT call to set the IPV6_ADDR_PREFERENCES option to indicate your selection

preferences of source IP address before binding the socket and before allowing an implicit bind of the
socket to occur.

Result: If a socket has not been explicitly bound to a local IP address with a BIND or BIND2ADDRSEL
call when a CONNECT, SENDTO, or SENDMSG call is issued, an implicit bind occurs. The stack chooses
the local IP address used for outbound packets.

Requirement: When your application is using stream sockets, and must prevent the stack from sending
any packets whatsoever (such as SYN) to the remote host before it can verify that the local IP address
meets the values specified for the IPV6_ADDR_PREFERENCES option, do not allow the CONNECT call
to implicitly bind the socket to a local IP address. Instead, bind the socket with the BIND2ADDRSEL
call and test the local IP address assigned with the INET6_IS_SRCADDR call. If the assigned local IP
address is satisfactory, you can then use the CONNECT call to establish communication with the remote
host.

• After you successfully issue the BIND2ADDRSEL call, use the GETSOCKNAME call to obtain the local IP
address that is bound to the socket. When the local IP address is obtained, use the INET6_IS_SRCADDR
call to verify that the local IP address meets your address selection criteria.

Table 7. BIND2ADDRSEL call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 17 on page 61 shows an example of BIND2ADDRSEL call instructions.

60 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND2ADDRSEL'.
 01 S PIC 9(4) BINARY.
 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 17. BIND2ADDRSEL call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing BIND2ADDRSEL. The field is left-aligned and padded to the right
with blanks.

S
A halfword binary number specifying the socket descriptor for the socket that is to be bound.

Requirement: The socket must be an AF_INET6 socket. The type can be SOCK_STREAM or
SOCK_DGRAM.

NAME
Specifies the IPv6 socket address structure of the remote host that the socket will communicate with.
The IPv6 socket structure must specify the following fields:
FAMILY

A halfword binary field specifying the IPv6 addressing family. This field must be set to the decimal
value 19, indicating AF_INET6.

PORT
A halfword binary field. This field is ignored by BIND2ADDRSEL processing.

Tip: To determine the assigned port number, issue the GETSOCKNAME call after the
BIND2ADDRSEL call completes.

FLOWINFO
A fullword binary field. This field is ignored by BIND2ADDRSEL processing.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address (network byte order) of the remote
host that the socket will communicate with.

Rule: Specify an IPv4 address by using its IPv4-mapped IPv6 format.

SCOPE-ID
A fullword binary field that identifies a set of appropriate interfaces for the scope of the address
that is specified in the IPv6-ADDRESS field. The value 0 indicates that the SCOPE-ID field does not
identify the set of interfaces to be used.

Requirement: The SCOPE-ID value must be nonzero if the address is a link-local address. For all
other address scopes, SCOPE-ID must be set to 0.

Chapter 7. CALL instruction application programming interface 61

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

CLOSE
The CLOSE call performs the following functions:

• The CLOSE call shuts down a socket and frees all resources allocated to it. If the socket refers to an
open TCP connection, the connection is closed.

• The CLOSE call is also issued by a concurrent server after it gives a socket to a child server program.
After issuing the GIVESOCKET and receiving notification that the client child has successfully issued a
TAKESOCKET, the concurrent server issues the close command to complete the passing of ownership.
In high-performance, transaction-based systems the timeout associated with the CLOSE call can cause
performance problems. In such systems, you should consider the use of a SHUTDOWN call before you
issue the CLOSE call. See “SHUTDOWN” on page 178 for more information.

Note:

– If a stream socket is closed while input or output data is queued, the TCP connection is reset and
data transmission might be incomplete. The SETSOCKOPT call can be used to set a linger condition,
in which TCP/IP will continue to attempt to complete data transmission for a specified time after the
CLOSE call is issued. See SO-LINGER in the description of “SETSOCKOPT” on page 161.

– A concurrent server differs from an iterative server. An iterative server provides services for one
client at a time; a concurrent server receives connection requests from multiple clients and creates
child servers that actually serve the clients. When a child server is created, the concurrent server
obtains a new socket, passes the new socket to the child server, and then dissociates itself from the
connection. The CICS Listener is an example of a concurrent server.

– After an unsuccessful socket call, a close should be issued and a new socket should be opened. An
attempt to use the same socket with another call results in a nonzero return code.

Table 8. CLOSE call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

62 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 8. CLOSE call requirements (continued)

Condition Requirement

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 18 on page 63 shows an example of CLOSE call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'CLOSE'.
 01 S PIC 9(4) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S ERRNO RETCODE.

Figure 18. CLOSE call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte field containing CLOSE. Left-align the field and pad it on the right with blanks.
S

A halfword binary field containing the descriptor of the socket to be closed.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

CONNECT
The CONNECT call is issued by a client to establish a connection between a local socket and a remote
socket.

The call sequence issued by the client and server for stream sockets is:

1. The server issues BIND and LISTEN to create a passive open socket.
2. The client issues CONNECT to request the connection.
3. The server accepts the connection on the passive open socket, creating a new connected socket.

The blocking mode of the CONNECT call conditions its operation.

• If the socket is in blocking mode, the CONNECT call blocks the calling program until the connection is
established, or until an error is received.

Chapter 7. CALL instruction application programming interface 63

• If the socket is in nonblocking mode, the return code indicates whether the connection request was
successful.

– A 0 RETCODE indicates that the connection was completed.
– A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates that the connection is not

completed. However, because the socket is nonblocking, the CONNECT call returns normally.

The caller must test the completion of the connection setup by calling SELECT and testing for the ability
to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more information, see “SELECT” on
page 145.

Table 9. CONNECT call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 19 on page 64 shows an example of CONNECT call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'CONNECT'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 19. CONNECT call instruction example

64 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Stream sockets
For stream sockets, the CONNECT call is issued by a client to establish connection with a server. The call
performs two tasks:

• It completes the binding process for a stream socket if a BIND call has not been previously issued.
• It attempts to make a connection to a remote socket. This connection is necessary before data can be

transferred.

UDP sockets
For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it allows you to send
messages without specifying the destination.

Parameter values set by the application
SOC-FUNCTION

A 16-byte field containing CONNECT. Left-align the field and pad it on the right with blanks.
S

A halfword binary number specifying the socket descriptor of the socket that is to be used to establish
a connection.

NAME

An IPv4 socket address structure that contains the IPv4 socket address of the target to which the
local, client socket is to be connected.

FAMILY
A halfword binary field specifying the IPv4 addressing family. The value must be decimal 2 for
AF_INET.

PORT
A halfword binary field that is set to the server’s port number in network byte order. For example,
if the port number is 5000 in decimal, it is stored as X'1388' in hex.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 IP address of the server’s host machine in
network byte order. For example, if the IP address is 129.4.5.12 in dotted decimal notation, it
would be represented as X'8104050C' in hex.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is not used.

An IPv6 socket address structure that contains the IPv6 socket address of the target to which the
local, client socket is to be connected.

FAMILY
A halfword binary field specifying the IPv6 addressing family. For TCP/IP the value is decimal 19
for AF_INET6.

PORT
A halfword binary field that is set to the server’s port number in network byte order. For example,
if the port number is 5000 in decimal, it is stored as X'1388' in hex.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

Chapter 7. CALL instruction application programming interface 65

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address of the server’s host machine in
network byte order. For example, if the IPv6 IP address is 12ab:0:0:cd30:123:4567:89ab:cedf in
colon hex notation, it is set to X'12AB00000000CD300123456789ABCDEF'.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and can be specified for any address types and scopes.
For a link scope IPv6-ADDRESS, SCOPE-ID can specify a link index which identifies a set of
interfaces. For all other address scopes, SCOPE-ID must be set to 0.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

FCNTL
The blocking mode of a socket can either be queried or set to nonblocking using the FNDELAY flag
described in the FCNTL call. You can query or set the FNDELAY flag even though it is not defined in your
program.

See “IOCTL” on page 118 for another way to control a socket’s blocking mode.

Values for commands that are supported by the z/OS UNIX Systems Services fcntl callable service will
also be accepted. See z/OS UNIX System Services Programming: Assembler Callable Services Reference
for more information.

Table 10. FCNTL call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

66 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Figure 20 on page 67 shows an example of FCNTL call instructions.

 WORKING-STORAGE SECTION
 01 SOC-FUNCTION PIC X(16) VALUE IS 'FCNTL'.
 01 S PIC 9(4) BINARY.
 01 COMMAND PIC 9(8) BINARY.
 01 REQARG PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION
 CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND REQARG
 ERRNO RETCODE.

Figure 20. FCNTL call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing FCNTL. The field is left-aligned and padded on the right with
blanks.

S
A halfword binary number specifying the socket descriptor for the socket that you want to unblock or
query.

COMMAND
A fullword binary number with the following values:
Value

Description
3

Query the blocking mode of the socket.
4

Set the mode to blocking or nonblocking for the socket.
REQARG

A fullword binary field containing a mask that TCP/IP uses to set the FNDELAY flag.

• If COMMAND is set to 3 ('query') the REQARG field should be set to 0.
• If COMMAND is set to 4 ('set')

– Set REQARG to 4 to turn the FNDELAY flag on. This places the socket in nonblocking mode.
– Set REQARG to 0 to turn the FNDELAY flag off. This places the socket in blocking mode.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values.

• If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking. (The FNDELAY flag is on.)
– If RETCODE contains X'00000000', the socket is blocking. (The FNDELAY flag is off.)

• If COMMAND was set to 4 (set), a successful call is indicated by 0 in this field. In both cases, a
RETCODE of -1 indicates an error (check the ERRNO field for the error number).

Chapter 7. CALL instruction application programming interface 67

FREEADDRINFO
The FREEADDRINFO call frees all the address information structures returned by GETADDRINFO in the
RES parameter.

Table 11. FREEADDRINFO call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 21 on page 68 shows an example of FREEADDRINFO call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'FREEADDRINFO'.
 01 ADDRINFO PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION ADDRINFO
 ERRNO RETCODE.

Figure 21. FREEADDRINFO call instruction example

Parameter values set by the application
Keyword

Description
SOC-FUNCTION

A 16-byte character field containing FREEADDRINFO. The field is left-aligned and padded on the right
with blanks.

ADDRINFO
Input parameter. The address of a set of address information structures returned by the
GETADDRINFO RES argument.

Parameter values returned to the application
Keyword

Description
ERRNO

Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix A, “Return codes,” on page 267 for information about ERRNO return codes.

68 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
–1

Check ERRNO for an error code.

GETADDRINFO
The GETADDRINFO call translates either the name of a service location (for example, a host name), a
service name, or both, and returns a set of socket addresses and associated information to be used in
creating a socket with which to address the specified service or sending a datagram to the specified
service.

Table 12. GETADDRINFO call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 22 on page 70 shows an example of GETADDRINFO call instructions.

Chapter 7. CALL instruction application programming interface 69

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETADDRINFO'.
 01 NODE PIC X(255).
 01 NODELEN PIC 9(8) BINARY.
 01 SERVICE PIC X(32).
 01 SERVLEN PIC 9(8) BINARY.
 01 AI-PASSIVE PIC 9(8) BINARY VALUE 1.
 01 AI-CANONNAMEOK PIC 9(8) BINARY VALUE 2.
 01 AI-NUMERICHOST PIC 9(8) BINARY VALUE 4.
 01 AI-NUMERICSERV PIC 9(8) BINARY VALUE 8.
 01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
 01 AI-ALL PIC 9(8) BINARY VALUE 32.
 01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.
 01 AI-EXTFLAGS PIC 9(8) BINARY VALUE 128.
 01 HINTS USAGE IS POINTER.
 01 RES USAGE IS POINTER.
 01 CANNLEN PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 LINKAGE SECTION.
 01 HINTS-ADDRINFO.
 03 FLAGS PIC 9(8) BINARY.
 03 AF PIC 9(8) BINARY.
 03 SOCTYPE PIC 9(8) BINARY.
 03 PROTO PIC 9(8) BINARY.
 03 FILLER PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 FILLER PIC X(4).
 03 FILLER PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 FILLER PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 FILLER PIC 9(8) BINARY.
 03 EFLAGS PIC 9(8) BINARY.
 01 RES-ADDRINFO.
 03 FLAGS PIC 9(8) BINARY.
 03 AF PIC 9(8) BINARY.
 03 SOCTYPE PIC 9(8) BINARY.
 03 PROTO PIC 9(8) BINARY.
 03 NAMELEN PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 FILLER PIC X(4).
 03 CANONNAME USAGE IS POINTER.
 03 FILLER PIC X(4).
 03 NAME USAGE IS POINTER.
 03 FILLER PIC X(4).
 03 NEXT USAGE IS POINTER.
 03 FILLER PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 MOVE 'www.hostname.com' TO NODE.
 MOVE 16 TO HOSTLEN.
 MOVE 'TELNET' TO SERVICE.
 MOVE 6 TO SERVLEN.
 SET HINTS TO ADDRESS OF HINTS-ADDRINFO.
 CALL 'EZASOKET' USING SOC-FUNCTION NODE NODELEN SERVICE SERVLEN HINTS
 RES CANNLEN ERRNO RETCODE.

Figure 22. GETADDRINFO call instruction example

Parameter values set by the application
Keyword

Description
SOC-FUNCTION

A 16-byte character field containing GETADDRINFO. The field is left-aligned and padded on the right
with blanks.

NODE
An input parameter. Storage up to 255 bytes long that contains the host name being queried. If
the AI-NUMERICHOST flag is specified in the storage pointed to by the HINTS field, then NODE
should contain the IP address of the queried host in presentation form. This is an optional field but if

70 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

specified you must also code NODELEN. The NODE name being queried will consist of up to NODELEN
or up to the first binary 0.

You can append scope information to the host name, using the format node%scope information. The
combined information must be 255 bytes or less. For more information, see z/OS Communications
Server: IPv6 Network and Application Design Guide.

NODELEN
An input parameter. A fullword binary field set to the length of the host name specified in the NODE
field and should not include extraneous blanks. This is an optional field but if specified you must also
code NODE.

SERVICE
An input parameter. Storage up to 32 bytes long that contains the service name being queried. If the
AI-NUMERICSERV flag is specified in the storage pointed to by the HINTS field, then SERVICE should
contain the queried port number in presentation form. This is an optional field but if specified you
must also code SERVLEN. The SERVICE name being queried will consist of up to SERVLEN or up to the
first binary 0.

SERVLEN
An input parameter. A fullword binary field set to the length of the service name specified in the
SERVICE field and should not include extraneous blanks. This is an optional field but if specified you
must also code SERVICE.

HINTS
An input parameter. If the HINTS argument is specified, it contains the address of an addrinfo
structure containing input values that might direct the operation by providing options and limiting
the returned information to a specific socket type, address family, or protocol. If the HINTS argument
is not specified, then the information returned will be as if it referred to a structure containing the
value 0 for the FLAGS, SOCTYPE and PROTO fields, and AF_UNSPEC for the AF field. Include the
EZBREHST resolver macro so that your assembler program will contain the assembler mappings for
the ADDR_INFO structure. The EZBREHST assembler macro is stored in the SYS1.MACLIB library.
The macro defines the resolver hostent (host entry), address information (addrinfo) mappings, and
services return codes. Copy definitions from the EZACOBOL sample module to your COBOL program
for mapping the ADDRINFO structure. The EZACOBOL sample module is stored in the hlq.SEZAINST
library. Copy definitions from the CBLOCK sample module to your PL/I program for mapping the
ADDRINFO structure. The CBLOCK sample module is stored in hlq.SEZAINST library.

This is an optional field.

The address information structure has the following fields:

Field
Description

FLAGS
A fullword binary field. Must have the value of 0 or the bitwise OR of one or more of the following
values:
AI-PASSIVE (X'00000001') or the decimal value 1.

• Specifies how to fill in the NAME pointed to by the returned RES.
• If this flag is specified, then the returned address information will be suitable for use in

binding a socket for accepting incoming connections for the specified service (for example,
the BIND call). In this case, if the NODE argument is not specified, then the IP address
portion of the socket address structure pointed to by the returned RES will be set to
INADDR_ANY for an IPv4 address or to the IPv6 unspecified address (in6addr_any) for an
IPv6 address.

• If this flag is not set, the returned address information will be suitable for the CONNECT
call (for a connection-mode protocol) or for a CONNECT, SENDTO, or SENDMSG call (for a
connectionless protocol). In this case, if the NODE argument is not specified, then the IP
address portion of the socket address structure pointed to by the returned RES will be set

Chapter 7. CALL instruction application programming interface 71

to the default loopback address for an IPv4 address (127.0.0.1) or the default loopback
address for an IPv6 address (::1).

• This flag is ignored if the NODE argument is specified.

AI-CANONNAMEOK (X'00000002') or the decimal value 2.

• If this flag is specified and the NODE argument is specified, then the GETADDRINFO call
attempts to determine the canonical name corresponding to the NODE argument.

AI-NUMERICHOST (X'00000004') or the decimal value 4.

• If this flag is specified then the NODE argument must be a numeric host address in
presentation form. Otherwise, an error of host not found [EAI_NONAME] is returned.

AI-NUMERICSERV (X'00000008') or the decimal value 8.

• If this flag is specified, the SERVICE argument must be a numeric port in presentation form.
Otherwise, an error [EAI_NONAME] is returned.

AI-V4MAPPED (X'00000010') or the decimal value 16.

• If this flag is specified along with the AF field with the value of AF_INET6 or a value of
AF_UNSPEC when IPv6 is supported, the caller accepts IPv4-mapped IPv6 addresses.

– If the AF field is AF_INET6, a query for IPv4 addresses is made if the AI-ALL flag is
specified or if no IPv6 addresses are found. Any IPv4 addresses that are found are
returned as IPv4-mapped IPv6 addresses.

– If the AF field is AF_UNSPEC, queries are made for both IPv6 and IPv4 addresses. If
IPv4 addresses are found and IPv6 is supported, the IPv4 addresses are returned as
IPv4-mapped IPv6 addresses.

• Otherwise, this flag is ignored.

AI-ALL (X'00000020') or the decimal value 32.

• If the AF field has a value of AF_INET6 and AI-ALL is set, the AI-V4MAPPED flag must also
be set to indicate that the caller will accept all addresses: IPv6 and IPv4-mapped IPv6
addresses.

• If the AF field has a value of AF_UNSPEC, AI-ALL is accepted, but has no impact on the
processing. No matter if AI-ALL is specified or not, the caller accepts both IPv6 and IPv4
addresses. A query is first made for IPv6 addresses and if successful, the IPv6 addresses
are returned. Another query is then made for IPv4 addresses:

– If AI-V4MAPPED is also specified and the system supports IPv6, the IPv4 addresses are
returned as IPv4-mapped IPv6 addresses.

– If AI-V4MAPPED is not specified or the system does not support IPv6, the IPv4 addresses
are returned.

• Otherwise, this flag is ignored.

AI-ADDRCONFIG (X'00000040') or the decimal value 64.
If this flag is specified, then a query on the name in NODE will occur if the Resolver determines
whether either of the following values is true:

• If the system is IPv6 enabled and has at least one IPv6 interface, then the Resolver will
make a query for IPv6 (AAAA or A6 DNS) records.

• If the system is IPv4 enabled and has at least one IPv4 interface, then the Resolver will
make a query for IPv4 (A DNS) records.

The loopback address is not considered in this case as a valid interface.

AI-EXTFLAGS (X'00000080') or the decimal value 128.
Specifies this flag to request the extended form of the getaddrinfo function. The extended
form allows additional hints to be passed to the resolver for determining the order of
destination addresses that are returned. If this flag is specified, the EFLAGS field is required.

72 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Tip: To perform the binary OR'ing of the flags above in a COBOL program, simply add the
necessary COBOL statements as in the example below. Note that the value of the FLAGS field after
the COBOL ADD is a decimal 80 or an X'00000050', which is the sum of OR'ing AI_V4MAPPED and
AI_ADDRCONFIG or X'00000010' and X'00000040':

 01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
 01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.

 ADD AI-V4MAPPED TO FLAGS.
 ADD AI-ADDRCONFG TO FLAGS.

AF
A fullword binary field. Used to limit the returned information to a specific address family. The
value of AF_UNSPEC means that the caller will accept any protocol family. The value of a decimal
0 indicates AF_UNSPEC. The value of a decimal 2 indicates AF_INET, and the value of a decimal 19
indicates AF_INET6.

SOCTYPE

A fullword binary field. Used to limit the returned information to a specific socket type. A value
of 0 means that the caller will accept any socket type. If a specific socket type is not given (for
example, a value of 0) then information on all supported socket types will be returned.

The following table shows the acceptable socket types:

Type name Decimal value Description

SOCK_STREAM 1 for stream socket

SOCK_DGRAM 2 for datagram socket

SOCK_RAW 3 for raw-protocol interface

Anything else will fail with return code EAI_SOCTYPE. Note that although SOCK_RAW will be
accepted, it will be valid only when SERVICE is numeric (for example, SERVICE=23). A lookup for
a SERVICE name will never occur in the appropriate services file (for example, hlq.ETC.SERVICES)
using any protocol value other than SOCK_STREAM or SOCK_DGRAM.

If PROTO is not 0 and SOCTYPE is 0, then the only acceptable input values for PROTO are
IPPROTO_TCP and IPPROTO_UDP. Otherwise, the GETADDRINFO call will be failed with return
code of EAI_BADFLAGS.

If SOCTYPE and PROTO are both specified as 0, then GETADDRINFO will proceed as follows:

• If SERVICE is null, or if SERVICE is numeric, then any returned addrinfos will default to a
specification of SOCTYPE as SOCK_STREAM.

• If SERVICE is specified as a service name (for example, SERVICE=FTP), the GETADDRINFO call
will search the appropriate services file (for example, hlq.ETC.SERVICES) twice. The first search
will use SOCK_STREAM as the protocol, and the second search will use SOCK_DGRAM as the
protocol. No default socket type provision exists in this case.

If both SOCTYPE and PROTO are specified as nonzero, then they should be compatible, regardless
of the value specified by SERVICE. In this context, compatible means one of the following values:

• SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
• SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
• SOCTYPE is specified as SOCK_RAW, in which case PROTO can be anything

PROTO
A fullword binary field. Used to limit the returned information to a specific protocol. A value of 0
means that the caller will accept any protocol.

The following table shows the acceptable protocols:

Chapter 7. CALL instruction application programming interface 73

Protocol name Decimal value Description

IPPROTO_TCP 6 TCP

IPPROTO_UDP 17 user datagram

If SOCTYPE is 0 and PROTO is nonzero, the only acceptable input values for PROTO are
IPPROTO_TCP and IPPROTO_UDP. Otherwise, the GETADDRINFO call will be failed with return
code of EAI_BADFLAGS.

If PROTO and SOCTYPE are both specified as 0, then GETADDRINFO will proceed as follows:

• If SERVICE is null, or if SERVICE is numeric, then any returned addrinfos will default to a
specification of SOCTYPE as SOCK_STREAM.

• If SERVICE is specified as a service name (for example, SERVICE=FTP), the GETADDRINFO
will search the appropriate services file (for example, hlq.ETC.SERVICE) twice. The first search
will use SOCK_STREAM as the protocol, and the second search will use SOCK_DGRAM as the
protocol. No default socket type provision exists in this case.

If both PROTO and SOCTYPE are specified as nonzero, they should be compatible, regardless of
the value specified by SERVICE. In this context, compatible means one of the following values:

• SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
• SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
• SOCTYPE=SOCK_RAW, in which case PROTO can be anything

If the lookup for the value specified in SERVICE fails [for example, the service name does not
appear in an appropriate service file (such as, hlq.ETC.SERVICES) using the input protocol], then
the GETADDRINFO call will be failed with return code of EAI_SERVICE.

NAMELEN
A fullword binary field followed by 8 padding bytes. On input, this field must be 0.

CANONNAME
A fullword binary field followed by 4 padding bytes. On input, this field must be 0.

NAME
A fullword binary field followed by 4 padding bytes. On input, this field must be 0.

NEXT
A fullword binary field. On input, this field must be 0.

EFLAGS
A fullword binary field that specifies the source IPv6 address selection preferences. This field is
required if the value AI_EXTFLAGS is specified in the FLAGS field.

This field must contain the value 0 or the bitwise OR of one or more of the following values:
IPV6_PREFER_SRC_HOME (X'00000001') or the decimal value 1

Indicates that home source IPv6 addresses are preferred over care-of source IPv6 addresses.
IPV6_PREFER_SRC_COA (X'00000002') or the decimal value 2

Indicates that care-of source IPv6 addresses are preferred over home source IPv6 addresses.
IPV6_PREFER_SRC_TMP (X'00000004') or the decimal value 4

Indicates that temporary source IPv6 addresses are preferred over public source IPv6 addresses.
IPV6_PREFER_SRC_PUBLIC (X'00000008') or the decimal value 8

Indicates that public source IPv6 addresses are preferred over temporary source IPv6 addresses.
IPV6_PREFER_SRC_CGA (X'00000010') or the decimal value 16

Indicates that cryptographically generated source IPv6 addresses are preferred over non-
cryptographically generated source IPv6 addresses.

IPV6_PREFER_SRC_NONCGA (X'00000020') or the decimal value 32
Indicates that non-cryptographically generated source IPv6 addresses are preferred over
cryptographically generated source IPv6 addresses.

74 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Guidelines:

• If contradictory EFLAGS (for example, IPV6_PREFER_SRC_TMP and IPV6_PREFER_SRC_PUBLIC)
or invalid EFLAGS (for example, X'00000040' or the decimal value 64) are specified, then the
GETADDRINFO call fails with RETCODE -1 and ERRNO EAI_BADEXTFLAGS (decimal value 11).

• The COBOL constants for EFLAGS use hyphens instead of underscores.

RES

Initially a fullword binary field. On a successful return, this field contains a pointer to a chain of
one or more address information structures. The structures are allocated in the key of the calling
application. The structures that are returned on a GETADDRINFO call are serially reusable storage for
the z/OS UNIX process. They can be used or referenced between process threads, but should not
be used or referenced between processes. When you finish using the structures, explicitly release
their storage by specifying the returned pointer on a FREEADDRINFO call. Include the EZBREHST
resolver macro so that your assembler program contains the assembler mappings for the ADDR_INFO
structure. The EZBREHST assembler macro is stored in the SYS1.MACLIB library. Copy definitions
from the EZACOBOL sample module to your COBOL program for mapping the ADDRINFO structure.
The EZACOBOL sample module is stored in the hlq.SEZAINST library. Copy definitions from the
CBLOCK sample module to your PL/I program for mapping the ADDRINFO structure. The CBLOCK
sample module is stored in the hlq.SEZAINST library.

The address information structure contains the following fields:

Field
Description

FLAGS
A fullword binary field that is not used as output.

AF
A fullword binary field. The value returned in this field can be used as the AF argument on the
SOCKET call to create a socket suitable for use with the returned address NAME.

SOCTYPE
A fullword binary field. The value returned in this field can be used as the SOCTYPE argument on
the SOCKET call to create a socket suitable for use with the returned address NAME.

PROTO
A fullword binary field. The value returned in this field can be used as the PROTO argument on the
SOCKET call to create a socket suitable for use with the returned address ADDR.

NAMELEN
A fullword binary field followed by 8 padding bytes. The length of the NAME socket address
structure.

CANONNAME
A fullword binary field followed by 4 padding bytes. The canonical name for the value specified by
NODE. If the NODE argument is specified, and if the AI-CANONNAMEOK flag was specified by the
HINTS argument, then the CANONNAME field in the first returned address information structure
will contain the address of storage containing the canonical name corresponding to the input
NODE argument. If the canonical name is not available, then the CANONNAME field will refer to
the NODE argument or a string with the same contents. The CANNLEN field contains the length of
the returned canonical name.

NAME
A fullword binary field followed by 4 padding bytes. The address of the returned socket address
structure. The value returned in this field can be used as the arguments for the CONNECT, BIND,
or BIND2ADDRSEL call with such a socket, according to the AI-PASSIVE flag.

NEXT
A fullword binary field. Contains the address of the next address information structure on the list,
or 0's if it is the last structure on the list.

EFLAGS
A fullword binary field that is not used as output.

Chapter 7. CALL instruction application programming interface 75

CANNLEN
Initially an input parameter. A fullword binary field used to contain the length of the canonical name
returned by the RES CANONNAME field. This is an optional field.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix A, “Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

The ADDRINFO structure uses indirect addressing to return a variable number of NAMES. If you are
coding in PL/I or assembly language, this structure can be processed in a relatively straight-forward
manner. If you are coding in COBOL, this structure might be difficult to interpret. You can use the
subroutine EZACIC09 to simplify interpretation of the information returned by the GETADDRINFO calls.

GETCLIENTID
GETCLIENTID call returns the identifier by which the calling application is known to the TCP/IP address
space in the calling program. The CLIENT parameter is used in the GIVESOCKET and TAKESOCKET calls.
See “GIVESOCKET” on page 111 for a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server, the identifier of the
caller (not necessarily the client) is returned.

Table 13. GETCLIENTID call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 23 on page 77 shows an example of GETCLIENTID call instructions.

76 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETCLIENTID'.
 01 CLIENT.
 03 DOMAIN PIC 9(8) BINARY.
 03 NAME PIC X(8).
 03 TASK PIC X(8).
 03 RESERVED PIC X(20).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION CLIENT ERRNO RETCODE.

Figure 23. GETCLIENTID call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETCLIENTID. The field is left-aligned and padded to the right
with blanks.

Parameter values returned to the application
CLIENT

A client-ID structure that describes the application that issued the call.
DOMAIN

This is a fullword binary number specifying the domain of the client. On input this is an optional
parameter for AF_INET, and required parameter for AF_INET6 to specify the domain of the client.
For TCP/IP the value is a decimal 2, indicating AF_INET, or a decimal 19, indicating AF_INET6. On
output, this is the returned domain of the client.

NAME
An 8-byte character field set to the caller’s address space name.

TASK
An 8-byte field set to the task identifier of the caller.

RESERVED
Specifies a 20-byte character reserved field. This field is required, but not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETHOSTBYADDR
The GETHOSTBYADDR call returns the domain name and alias name of a host whose IPv4 IP address
is specified in the call. A given TCP/IP host can have multiple alias names and multiple host IPv4 IP
addresses. The address resolution attempted depends on how the resolver is configured and if any

Chapter 7. CALL instruction application programming interface 77

local host tables exist. See z/OS Communications Server: IP Configuration Guide for information about
configuring the resolver and how local host tables can be used.

Table 14. GETHOSTBYADDR call requirements

Condition Requirement

Authorization: Supervisor state or problem state. The PSW key must match the key
in which the MVS application task was attached

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 24 on page 78 shows an example of GETHOSTBYADDR call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYADDR'.
 01 HOSTADDR PIC 9(8) BINARY.
 01 HOSTENT PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

Figure 24. GETHOSTBYADDR call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTBYADDR. The field is left-aligned and padded on the
right with blanks.

HOSTADDR
A fullword binary field set to the IP address (specified in network byte order) of the host whose name
is being sought. See Appendix A, “Return codes,” on page 267 for information about ERRNO return
codes.

Parameter values returned to the application
HOSTENT

A fullword containing the address of the HOSTENT structure.
RETCODE

A fullword binary field that returns one of the following values:

78 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Value
Description

0
Successful call.

-1
Check ERRNO for an error code.

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 25 on page 79.

Figure 25. HOSTENT structure that is returned by the GETHOSTBYADDR call

GETHOSTBYADDR returns the HOSTENT structure shown in figure Figure 25 on page 79. The HOSTENT
structure is a tasks's serially reusable storage area. It should not be used or referenced between MVS
tasks. The storage is freed when the task terminates. The assembler mapping of the structure is defined
in macro EZBREHST, which is installed in the data set specified on your SMP/E DDDEF for MACLIB. The
EZBREHST assembler macro is stored in the SYS1.MACLIB library. The macro defines the resolver hostent
(host entry), address information (addrinfo) mappings, and services return codes. This structure contains:

• The address of the host name that is returned by the call. The name length is variable and is ended by
X'00'.

• The address of a list of addresses that point to the alias names returned by the call. This list is ended by
the pointer X'00000000'. Each alias name is a variable length field ended by X'00'.

• The value returned in the FAMILY field is always 2 for AF_INET.
• The length of the host IP address returned in the HOSTADDR_LEN field is always 4 for AF_INET.

Chapter 7. CALL instruction application programming interface 79

• The address of a list of addresses that point to the host IP addresses returned by the call. The list is
ended by the pointer X'00000000'. If the call cannot be resolved, the HOSTENT structure contains the
ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of alias names and IP
addresses. If you are coding in PL/I or assembly language, this structure can be processed in a relatively
straight-forward manner. If you are coding in COBOL, this structure might be difficult to interpret.
You can use the subroutine EZACIC08 to simplify interpretation of the information returned by the
GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about EZACIC08, see “EZACIC08 ”
on page 192.

GETHOSTBYNAME
The GETHOSTBYNAME call returns the alias name and the IPv4 IP address of a host whose domain name
is specified in the call. A given TCP/IP host can have multiple alias names and multiple host IPv4 IP
addresses.

The name resolution attempted depends on how the resolver is configured and if any local host tables
exist. See z/OS Communications Server: IP Configuration Guide for information about configuring the
resolver and how local host tables can be used.

Table 15. GETHOSTBYNAME call requirements

Condition Requirement

Authorization: Supervisor state or problem state. The PSW key must match the key
in which the MVS application task was attached.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 26 on page 80 shows an example of GETHOSTBYNAME call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYNAME'.
 01 NAMELEN PIC 9(8) BINARY.
 01 NAME PIC X(255).
 01 HOSTENT PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME
 HOSTENT RETCODE.

Figure 26. GETHOSTBYNAME call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

80 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTBYNAME. The field is left-aligned and padded on the
right with blanks.

NAMELEN
A value set to the length of the host name. The maximum length is 255.

NAME
A character string, up to 255 characters, set to a host name. Any trailing blanks will be removed from
the specified name prior to trying to resolve it to an IP address. This call returns the address of the
HOSTENT structure for this name.

Parameter values returned to the application
HOSTENT

A fullword binary field that contains the address of the HOSTENT structure.
RETCODE

A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

An error occurred.

Chapter 7. CALL instruction application programming interface 81

Figure 27. HOSTENT structure returned by the GETHOSTYBYNAME call

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 27 on page 82. The HOSTENT
structure is a tasks's serially reusable storage area. It should not be used or referenced between MVS
tasks. The storage is freed when the task terminates. The assembler mapping of the structure is defined
in macro EZBREHST, which is installed in the data set specified on your SMP/E DDDEF for MACLIB. The
EZBREHST assembler macro is stored in the SYS1.MACLIB library. The macro defines the resolver hostent
(host entry), address information (addrinfo) mappings, and services return codes. This structure contains:

• The address of the host name that is returned by the call. The name length is variable and is ended by
X'00'.

• The address of a list of addresses that point to the alias names returned by the call. This list is ended by
the pointer X'00000000'. Each alias name is a variable length field ended by X'00'.

• The value returned in the FAMILY field is always 2 for AF_INET.
• The length of the host IP address returned in the HOSTADDR_LEN field is always 4 for AF_INET.
• The address of a list of addresses that point to the host IP addresses returned by the call. The list is

ended by the pointer X'00000000'. If the call cannot be resolved, the HOSTENT structure contains the
ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of alias names and IP
addresses. If you are coding in PL/I or assembly language, this structure can be processed in a relatively
straight-forward manner. If you are coding in COBOL, this structure might be difficult to interpret.
You can use the subroutine EZACIC08 to simplify interpretation of the information returned by the
GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about EZACIC08, see “EZACIC08 ”
on page 192.

82 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

GETHOSTID
The GETHOSTID call returns the 32-bit IP address for the current host.

Table 16. GETHOSTID call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 28 on page 83 shows an example of GETHOSTID call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTID'.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION RETCODE.

Figure 28. GETHOSTID call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTID. The field is left-aligned and padded on the right with
blanks.

RETCODE
Returns a fullword binary field containing the 32-bit IP address of the host. There is no ERRNO
parameter for this call.

GETHOSTNAME
The GETHOSTNAME call returns the domain name of the local host.

Note: The host name returned is the host name the TCPIP stack learned at startup from the TCPIP.DATA
file that was found.

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Chapter 7. CALL instruction application programming interface 83

Condition Requirement

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 29 on page 84 shows an example of GETHOSTNAME call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTNAME'.
 01 NAMELEN PIC 9(8) BINARY.
 01 NAME PIC X(24).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME
 ERRNO RETCODE.

Figure 29. GETHOSTNAME call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETHOSTNAME. The field is left-aligned and padded on the right
with blanks.

NAMELEN
A fullword binary field set to the length of the NAME field. The minimum length of the NAME field is 1
character. The maximum length of the NAME field is 255 characters.

Parameter values returned to the application
NAME

Indicates the receiving field for the host name. If the host name is shorter than the NAMELEN value,
the NAME field is filled with binary zeros after the host name. If the host name is longer than the
NAMELEN value, the name is truncated.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.

84 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

-1
Check ERRNO for an error code.

GETIBMOPT
The GETIBMOPT call returns the number of TCP/IP images installed on a given MVS system and their
status, versions, and names. With this information, the caller can dynamically choose the TCP/IP image
with which to connect by using the INITAPI call. The GETIBMOPT call is optional. If you do not use the
GETIBMOPT call, follow the standard method to determine the connecting TCP/IP image:

• Connect to the TCP/IP specified by TCPIPJOBNAME in the active TCPIP.DATA file.
• Locate TCPIP.DATA using the search order described in the z/OS Communications Server: IP
Configuration Reference.

Table 17. GETIBMOPT call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 30 on page 85 shows an example of GETIBMOPT call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETIBMOPT'.
 01 COMMAND PIC 9(8) BINARY VALUE IS 1.
 01 BUF.
 03 NUM-IMAGES PIC 9(8) COMP.
 03 TCP-IMAGE OCCURS 8 TIMES.
 05 TCP-IMAGE-STATUS PIC 9(4) BINARY.
 05 TCP-IMAGE-VERSION PIC 9(4) BINARY.
 05 TCP-IMAGE-NAME PIC X(8)
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL 'EZASOKET' USING SOC-FUNCTION COMMAND BUF ERRNO RETCODE.

Figure 30. GETIBMOPT call instruction example

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETIBMOPT. The field is left-aligned and padded on the right with
blanks.

Chapter 7. CALL instruction application programming interface 85

COMMAND
A value or the address of a fullword binary number specifying the command to be processed. The only
valid value is 1.

Parameter values returned to the application
BUF

A 100-byte buffer into which each active TCP/IP image status, version, and name are placed.

On successful return, these buffer entries contain the status, names, and versions of up to eight active
TCP/IP images. The following layout shows the BUF field upon completion of the call.

The NUM_IMAGES field indicates how many entries of TCP_IMAGE are included in the total BUF field. If
the NUM_IMAGES returned is 0, there are no TCP/IP images present.

The status field can have a combination of the following information:
Status field

Meaning
X'8xxx'

Active
X'4xxx'

Terminating
X'2xxx'

Down
X'1xxx'

Stopped or stopping

Note: In the preceding status fields, xxx is reserved for IBM use and can contain any value.

When the status field is returned with a combination of Down and Stopped, TCP/IP abended. Stopped,
when returned alone, indicates that TCP/IP was stopped.

The version field is:

Version Field

TCP/IP z/OS Communications Server V1R4 X'0614'

TCP/IP z/OS Communications Server V1R5 X'0615'

TCP/IP z/OS Communications Server V1R6 X'0616'

TCP/IP z/OS Communications Server V1R7 X'0617'

TCP/IP z/OS Communications Server V1R8 X'0618'

TCP/IP z/OS Communications Server V1R9 X'0619'

TCP/IP z/OS Communications Server V1R10 X'061A'

TCP/IP z/OS Communications Server V1R11 X'061B'

The name field is the PROC name, left-aligned, and padded with blanks.

86 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Figure 31. Example of name field

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field with the following values:
Value

Description
-1

Call returned error. See ERRNO field.
0

Successful call.

GETNAMEINFO
The GETNAMEINFO call returns the node name and service location of a socket address that is specified
in the call. On successful completion, GETNAMEINFO returns the node and service named, if requested,
in the buffers provided.

Table 18. GETNAMEINFO call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 7. CALL instruction application programming interface 87

Table 18. GETNAMEINFO call requirements (continued)

Condition Requirement

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETNAMEINFO'.
 01 NAMELEN PIC 9(8) BINARY.
 01 HOST PIC X(255).
 01 HOSTLEN PIC 9(8) BINARY.
 01 SERVICE PIC X(32).
 01 SERVLEN PIC 9(8) BINARY.
 01 FLAGS PIC 9(8) BINARY VALUE 0.
 01 NI-NOFQDN PIC 9(8) BINARY VALUE 1.
 01 NI-NUMERICHOST PIC 9(8) BINARY VALUE 2.
 01 NI-NAMEREQD PIC 9(8) BINARY VALUE 4.
 01 NI-NUMERICSERVER PIC 9(8) BINARY VALUE 8.
 01 NI-DGRAM PIC 9(8) BINARY VALUE 16.
 01 NI-NUMERICSCOPE PIC 9(8) BINARY VALUE 32.

 * IPv4 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 MOVE 28 TO NAMELEN.
 MOVE 255 TO HOSTLEN.
 MOVE 32 TO SERVLEN.
 MOVE NI-NAMEREQD TO FLAGS.
 CALL 'EZASOKET' USING SOC-FUNCTION NAME NAMELEN HOST
 HOSTLEN SERVICE SERVLEN FLAGS ERRNO RETCODE.

Figure 32. GETNAMEINFO call instruction example

Parameter values set by the application
Keyword

Description

88 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

SOC-FUNCTION
A 16-byte character field containing GETNAMEINFO. The field is left-aligned and padded on the right
with blanks.

NAME

An input parameter. A socket address structure to be translated which has the following fields:

The IPv4 socket address structure must specify the following fields:

Field
Description

FAMILY
A halfword binary number specifying the IPv4 addressing family. For TCP/IP the value is a decimal
2, indicating AF_INET.

PORT
A halfword binary number specifying the port number.

IP-ADDRESS
A fullword binary number specifying the 32-bit IPv4 IP address.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure specifies the following fields:

Field
Description

FAMILY
A halfword binary field specifying the IPv6 addressing family. For TCP/IP the value is a decimal 19,
indicating AF_INET6.

PORT
A halfword binary number specifying the port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16-byte binary field specifying the 128-bit IPv6 IP address, in network byte order.

SCOPE-ID
A fullword binary field that identifies a set of interfaces as appropriate for the scope of the address
carried in the IPv6-ADDRESS field. For a link-local scope IPv6-ADDRESS, SCOPE-ID contains the
interface index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined and is
ignored by the resolver.

NAMELEN
An input parameter. A fullword binary field. The length of the socket address structure pointed to by
the NAME argument.

HOST
On input, storage capable of holding the returned resolved host name, which can be up to 255 bytes
long, for the input socket address. If inadequate storage is specified to contain the resolved host
name, then the resolver will return the host name up to the storage specified and truncation might
occur. If the host name cannot be located, the numeric form of the host address is returned instead of
its name. However, if the NI_NAMEREQD option is specified and no host name is located then an error
is returned. HOST is an optional field, but if you specify it, you also must code HOSTLEN. One or both
of the following groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.

Chapter 7. CALL instruction application programming interface 89

If the IPv6-ADDRESS value is a link-local address, and the SCOPE-ID interface index is nonzero, scope
information is appended to the resolved host name in the format host%scope information. The scope
information can be either the numeric form of the SCOPE-ID interface index or the interface name
associated with the SCOPE-ID interface index. Use the NI_NUMERICSCOPE option to select which
form should be returned. The combined host name and scope information will still be at most 255
bytes long. For more information about scope information and GETNAMEINFO processing, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

HOSTLEN
An output parameter. A fullword binary field that contains the length of the host storage used to
contain the returned resolved host name. The HOSTLEN value must be equal to or greater than the
length of the longest host name, or host name and scope information combination, to be returned.
The GETNAMEINFO call returns the host name, or host name and scope information combination, up
to the length specified by the HOSTLEN value. On output, the HOSTLEN value contains the length of
the returned resolved host name or host name and scope information combination. If HOSTLEN is 0
on input, then the resolved host name is not returned. HOSTLEN is an optional field but if specified
you must also code the HOST value. One or both of the following groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
SERVICE

On input, storage capable of holding the returned resolved service name, which can be up to 32 bytes
long, for the input socket address. If inadequate storage is specified to contain the resolved service
name, then the resolver will return the service name up to the storage specified and truncation might
occur. If the service name cannot be located, or if NI_NUMERICSERV was specified in the FLAGS
operand, then the numeric form of the service address is returned instead of its name. SERVICE is an
optional field, but if you specify it, you also must code the SERVLEN value. One or both of the following
groups of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
SERVLEN

An output parameter. A fullword binary field. The length of the SERVICE storage used to contain the
returned resolved service name. SERVLEN must be equal to or greater than the length of the longest
service name to be returned. GETNAMEINFO will return the service name up to the length specified
by SERVLEN. On output, SERVLEN will contain the length of the returned resolved service name. If
SERVLEN is 0 on input, then the service name information will not be returned. SERVLEN is an optional
field, but if you specify it, you also must code the SERVICE value. One or both of the following groups
of parameters are required:

• The HOST and HOSTLEN parameters
• The SERVICE and SERVLEN parameters

Otherwise, an error occurs.
FLAGS

An input parameter. A fullword binary field. FLAGS is an optional field. The FLAGS field must contain
either a binary value or decimal value, depending on the programming language used:

Flag name Binary value Decimal
value

Description

'NI_NOFQDN' X'00000001' 1 Return the NAME portion of the fully qualified domain
name.

'NI_NUMERICHOST' X'00000002' 2 Return only the numeric form of host's address.

'NI_NAMEREQD' X'00000004' 4 Return an error if the host's name cannot be located.

90 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Flag name Binary value Decimal
value

Description

'NI_NUMERICSERV' X'00000008' 8 Return only the numeric form of the service address.

'NI_DGRAM' X'00000010' 16 Indicates that the service is a datagram service. The
default behavior is to assume that the service is a
stream service.

'NI_NUMERICSCOPE' X'00000020' 32 Return only the numeric form of the scope
information, when applicable

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix A, “Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
Output parameter. A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local socket is connected.

:

Table 19. GETPEERNAME call requirement

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 33 on page 92 shows an example of GETPEERNAME call instructions.

Chapter 7. CALL instruction application programming interface 91

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETPEERNAME'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 33. GETPEERNAME call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETPEERNAME. The field is left-aligned and padded on the right
with blanks.

S
A halfword binary number set to the socket descriptor of the local socket connected to the remote
peer whose address is required.

Parameter Values Returned to the Application
NAME

An IPv4 socket address structure to contain the peer name. The structure that is returned is the
socket address structure for the remote socket connected to the local socket specified in field S.
FAMILY

A halfword binary field containing the connection peer’s IPv4 addressing family. The call always
returns the value decimal 2, indicating AF_INET.

PORT
A halfword binary field set to the connection peer’s port number.

IP-ADDRESS
A fullword binary field set to the 32-bit IPv4 IP address of the connection peer’s host machine.

RESERVED
Specifies an 8-byte reserved field. This field is required, but not used.

An IPv6 socket address structure to contain the peer name. The structure that is returned is the
socket address structure for the remote socket that is connected to the local socket specified in field
S.
FAMILY

A halfword binary field containing the connection peer’s IPv6 addressing family. The call always
returns the value decimal 19, indicating AF_INET6.

92 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

PORT
A halfword binary field set to the connection peer’s port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 IP address of the connection peer's host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETSOCKNAME
The GETSOCKNAME call returns the address currently bound to a specified socket. If the socket is not
currently bound to an address, the call returns with the FAMILY field set, and the rest of the structure set
to 0.

Because a stream socket is not assigned a name until after a successful call to either BIND, CONNECT, or
ACCEPT, the GETSOCKNAME call can be used after an implicit bind to discover which port was assigned to
the socket.

Table 20. GETSOCKNAME call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 34 on page 94 shows an example of GETSOCKNAME call instructions.

Chapter 7. CALL instruction application programming interface 93

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKNAME'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 34. GETSOCKNAME call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETSOCKNAME. The field is left-aligned and padded on the right
with blanks.

S
A halfword binary number set to the descriptor of a local socket whose address is required.

Parameter values returned to the application
NAME

Specifies the IPv4 socket address structure returned by the call.
FAMILY

A halfword binary field containing the IPv4 addressing family. The call always returns the value
decimal 2, indicating AF_INET.

PORT
A halfword binary field set to the port number bound to this socket. If the socket is not bound, 0 is
returned.

IP-ADDRESS
A fullword binary field set to the 32-bit IP address of the local host machine.

RESERVED
Specifies 8 bytes of binary zeros. This field is required but not used.

NAME
Specifies the IPv6 socket address structure returned by the call.
FAMILY

A halfword binary field containing the IPv6 addressing family. The call always returns the value
decimal 19, indicating AF_INET6.

PORT
A halfword binary field set to the port number bound to this socket. If the socket is not bound, 0 is
returned.

94 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16 byte binary field set to the 128-bit IPv6 IP address in network byte order, of the local host
machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GETSOCKOPT
The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

Several options are associated with each socket. These options are described in Table 22 on page 96.
You must specify the option to be queried when you issue the GETSOCKOPT call.

Table 21. GETSOCKOPT call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 35 on page 96 shows an example of GETSOCKOPT call instructions.

Chapter 7. CALL instruction application programming interface 95

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKOPT'.
 01 S PIC 9(4) BINARY.
 01 OPTNAME PIC 9(8) BINARY.

 01 OPTVAL PIC 9(8) BINARY.
 If OPNAME = SO-LINGER then
 01 OPTVAL PIC X(16).

 01 OPTLEN PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME
 OPTVAL OPTLEN ERRNO RETCODE.

Figure 35. GETSOCKOPT call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_ADD_MEMBERSHIP

Use this option to enable an application
to join a multicast group on a specific
interface. An interface has to be specified
with this option. Only applications that
want to receive multicast datagrams need
to join multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a
4-byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_ADD_SOURCE_MEMBERSHIP

Use this option to enable an application
to join a source multicast group on
a specific interface and a specific
source address. You must specify an
interface and a source address with this
option. Applications that want to receive
multicast datagrams need to join source
multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for
the PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

96 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_BLOCK_SOURCE

Use this option to enable an application
to block multicast packets that have a
source address that matches the given
IPv4 source address. You must specify
an interface and a source address with
this option. The specified multicast group
must have been joined previously.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for
the PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_DROP_MEMBERSHIP

Use this option to enable an application to
exit a multicast group or to exit all sources
for a multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a
4-byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

IP_DROP_SOURCE_MEMBERSHIP

Use this option to enable an application to
exit a source multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for
the PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

Chapter 7. CALL instruction application programming interface 97

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_MULTICAST_IF

Use this option to set or obtain the
IPv4 interface address used for sending
outbound multicast datagrams from the
socket application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be
transmitted only on one interface at a
time.

A 4-byte binary field containing
an IPv4 interface address.

A 4-byte binary field containing
an IPv4 interface address.

IP_MULTICAST_LOOP

Use this option to control or determine
whether a copy of multicast datagrams
are looped back for multicast datagrams
sent to a group to which the sending host
itself belongs. The default is to loop the
datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will contain a 1.

If disabled, will contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the
IP time-to-live of outgoing multicast
datagrams. The default value is '01'x
meaning that multicast is available only to
the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

IP_UNBLOCK_SOURCE

Use this option to enable an application
to unblock a previously blocked source for
a given IPv4 multicast group. You must
specify an interface and a source address
with this option.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for
the PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

98 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_ADDR_PREFERENCES

Use this option to query or set
IPv6 address preferences of a socket.
The default source address selection
algorithm considers these preferences
when it selects an IP address that is
appropriate to communicate with a given
destination address.

This is an AF_INET6-only socket option.

Result: These flags are only preferences.
The stack could assign a source IP
address that does not conform to the
IPV6_ADDR_PREFERENCES flags that you
specify.

Guideline: Use the INET6_IS_SRCADDR
function to test whether the source
IP address matches one or more
IPV6_ADDR_PREFERENCES flags.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

Some of these flags
are contradictory. Combining
contradictory flags, such as
IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA,
results in error code EINVAL.

See IPV6_ADDR_PREFERENCES
and Mapping of GAI_HINTS/
GAI_ADDRINFO EFLAGS in
SEZAINST(CBLOCK) for the PL/I
example of the OPTNAME and
flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings
in SEZAINST(EZACOBOL) for
the COBOL example of the
OPTNAME and flag definitions.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_ NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

See IPV6_ADDR_
PREFERENCES and Mapping
of GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings
in SEZAINST(EZACOBOL) for
the COBOL example of the
OPTNAME and flag definitions.

Chapter 7. CALL instruction application programming interface 99

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_JOIN_GROUP

Use this option to control the reception
of multicast packets and specify that the
socket join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK)
for the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception
of multicast packets and specify that the
socket leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK)
for the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: An application must be
APF authorized to enable it to
set the hop limit value above
the system defined hop limit
value. CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of multicast hops.

100 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_MULTICAST_IF

Use this option to set or obtain the index
of the IPv6 interface used for sending
outbound multicast datagrams from the
socket application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine
whether a multicast datagram is looped
back on the outgoing interface by the IP
layer for local delivery when datagrams
are sent to a group to which the sending
host itself belongs. The default is to loop
multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the
hop limit used for outgoing unicast IPv6
packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: APF authorized
applications are permitted to set
a hop limit that exceeds the
system configured default. CICS
applications cannot execute as
APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of unicast hops.

IPV6_V6ONLY

Use this option to set or determine
whether the socket is restricted to send
and receive only IPv6 packets. The
default is to not restrict the sending and
receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

Chapter 7. CALL instruction application programming interface 101

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_BLOCK_SOURCE

Use this option to enable an application
to block multicast packets that have a
source address that matches the given
source address. You must specify an
interface index and a source address with
this option. The specified multicast group
must have been joined previously.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface
index number followed by a
socket address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for
the PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_JOIN_GROUP

Use this option to enable an application
to join a multicast group on a specific
interface. You must specify an interface
index. Applications that want to receive
multicast datagrams must join multicast
groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_JOIN_SOURCE_GROUP

Use this option to enable an application to
join a source multicast group on a specific
interface and a source address. You must
specify an interface index and the source
address. Applications that want to receive
multicast datagrams only from specific
source addresses need to join source
multicast groups.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface
index number followed by a
socket address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for
the PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

102 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_LEAVE_GROUP

Use this option to enable an application to
exit a multicast group or exit all sources
for a given multicast groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to
exit a source multicast group.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface
index number followed by a
socket address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for
the PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application
to unblock a previously blocked source for
a given multicast group. You must specify
an interface index and a source address
with this option.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface
index number followed by a
socket address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for
the PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

Chapter 7. CALL instruction application programming interface 103

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to
ASCII. When SO_ASCII is not set, data is
not translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_BROADCAST

Use this option to set or determine
whether a program can send broadcast
messages over the socket to destinations
that can receive datagram messages. The
default is disabled.

Note: This option has no meaning for
stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the
status of the debug option. The default is
disabled. The debug option controls the
recording of debug information.

Note:

1. This is a REXX-only socket option.
2. This option has meaning only for

stream sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set,
data is not translated to or from EBCDIC.
This option is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_ERROR

Use this option to request pending
errors on the socket or to check
for asynchronous errors on connected
datagram sockets or for other errors that
are not explicitly returned by one of the
socket calls. The error status is clear
afterwards.

N/A A 4-byte binary field containing
the most recent ERRNO for the
socket.

104 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_KEEPALIVE

Use this option to set or determine
whether the keep alive mechanism
periodically sends a packet on an
otherwise idle connection for a stream
socket.

The default is disabled.

When activated, the keep alive
mechanism periodically sends a packet
on an otherwise idle connection. If the
remote TCP does not respond to the
packet or to retransmissions of the
packet, the connection is terminated with
the error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine
how TCP/IP processes data that has not
been transmitted when a CLOSE is issued
for the socket. The default is disabled.

Note:

1. This option has meaning only for
stream sockets.

2. If you set a zero linger time, the
connection cannot close in an orderly
manner, but stops, resulting in a RESET
segment being sent to the connection
partner. Also, if the aborting socket is
in nonblocking mode, the close call is
treated as though no linger option had
been set.

When SO_LINGER is set and CLOSE is
called, the calling program is blocked until
the data is successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and
TCP/IP continues to attempt to send
data for a specified time. This usually
allows sufficient time to complete the
data transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP waits only the amount of time
specified in OPTVAL for SO_LINGER.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable
this option. Set LINGER to the
number of seconds that TCP/IP
lingers after the CLOSE is issued.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a
0 indicates disabled. LINGER
indicates the number of seconds
that TCP/IP will try to send data
after the CLOSE is issued.

Chapter 7. CALL instruction application programming interface 105

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_OOBINLINE

Use this option to control or determine
whether out-of-band data is received.

Note: This option has meaning only for
stream sockets.

When this option is set, out-of-band data
is placed in the normal data input queue
as it is received and is available to a RECV
or a RECVFROM even if the OOB flag is not
set in the RECV or the RECVFROM.

When this option is disabled, out-of-band
data is placed in the priority data input
queue as it is received and is available
to a RECV or a RECVFROM only when
the OOB flag is set in the RECV or the
RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

• TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
Socket

• UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
Socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of
the data portion of the TCP/IP
receive buffer.

If disabled, contains a 0.

106 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_RCVTIMEO

Use this option to control or determine
the maximum length of time that a
receive-type function can wait before it
completes.

If a receive-type function has blocked
for the maximum length of time that
was specified without receiving data,
control is returned with an errno set to
EWOULDBLOCK. The default value for this
option is 0, which indicates that a receive-
type function does not time out.

When the MSG_WAITALL flag (stream
sockets only) is specified, the timeout
takes precedence. The receive-type
function can return the partial count.
See the explanation of that operation's
MSG_WAITALL flag parameter.

The following receive-type functions are
supported:

• READ
• READV
• RECV
• RECVFROM
• RECVMSG

This option requires a TIMEVAL
structure, which is defined
in SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified
as fullword binary numbers.
The seconds can be a value
in the range 0 - 2678400
(equal to 31 days), and the
microseconds can be a value
in the range 0 - 1000000
(equal to 1 second). Although
TIMEVAL value can be specified
using microsecond granularity,
the internal TCP/IP timers that
are used to implement this
function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
the SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned
is in the range 0 - 2678400
(equal to 31 days). The number
of microseconds value that is
returned is in the range 0 -
1000000.

Chapter 7. CALL instruction application programming interface 107

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_REUSEADDR

Use this option to control or determine
whether local addresses are reused. The
default is disabled. This alters the normal
algorithm used with BIND. The normal
BIND algorithm allows each Internet
address and port combination to be
bound only once. If the address and
port have been already bound, then a
subsequent BIND will fail and result error
will be EADDRINUSE.

When this option is enabled, the following
situations are supported:

• A server can BIND the same port
multiple times as long as every
invocation uses a different local IP
address and the wildcard address
INADDR_ANY is used only one time per
port.

• A server with active client connections
can be restarted and can bind to its port
without having to close all of the client
connections.

• For datagram sockets, multicasting is
supported so multiple bind() calls can
be made to the same class D address
and port number.

• If you require multiple servers to
BIND to the same port and listen
on INADDR_ANY, see the SHAREPORT
option on the PORT statement in
TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
send buffer. The size of the TCP/IP send
buffer is protocol specific and is based on
the following values:

• The TCPSENDBufrsize keyword on
the TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
socket

• The UDPSENDBufrsize keyword on
the UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive
value specifying the size of the
data portion of the TCP/IP send
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP send
buffer.

If disabled, contains a 0.

108 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_SNDTIMEO

Use this option to control or determine
the maximum length of time that a send-
type function can remain blocked before it
completes.

If a send-type function has blocked for
this length of time, it returns with a partial
count or, if no data is sent, with an errno
set to EWOULDBLOCK. The default value
for this is 0, which indicates that a send-
type function does not time out.

For a SETSOCKOPT, the following send-
type functions are supported:

• SEND
• SENDMSG
• SENDTO
• WRITE
• WRITEV

This option requires a TIMEVAL
structure, which is defined in
the SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds value is in the range 0
- 2678400 (equal to 31 days),
and the microseconds value is in
the range 0 - 1000000 (equal
to 1 second). Although the
TIMEVAL value can be specified
using microsecond granularity,
the internal TCP/IP timers that
are used to implement this
function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
SYS1.MACLIB(BPXYRLIM). The
TIMEVAL structure contains
the number of seconds
and microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2678400 (equal
to 31 days). The microseconds
value that is returned is in the
range 0 - 1000000.

SO_TYPE

Use this option to return the socket type.

N/A A 4-byte binary field indicating
the socket type:

X'1' indicates SOCK_STREAM.

X'2' indicates SOCK_DGRAM.

X'3' indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine
whether a socket-specific timeout value
(in seconds) is to be used in place of
a configuration-specific value whenever
keep alive timing is active for that socket.

When activated, the socket-specified
timer value remains in effect until
respecified by SETSOCKOPT or until
the socket is closed. See the z/OS
Communications Server: IP Programmer's
Guide and Reference for more information
about the socket option parameters.

A 4-byte binary field.

To enable, set to a value in the
range of 1 – 2147460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the specific
timer value (in seconds) that is
in effect for the given socket.

If disabled, contains a 0
indicating keep alive timing is
not active.

Chapter 7. CALL instruction application programming interface 109

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

TCP_NODELAY

Use this option to set or determine
whether data sent over the socket is
subject to the Nagle algorithm (RFC 896).

Under most circumstances, TCP sends
data when it is presented. When this
option is enabled, TCP will wait to
send small amounts of data until the
acknowledgment for the previous data
sent is received. When this option is
disabled, TCP will send small amounts of
data even before the acknowledgment for
the previous data sent is received.

Note: Use the following to set
TCP_NODELAY OPTNAME value for
COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP
 VALUE 2147483649.
01 TCP-NODELAY-REDEF REDEFINES
 TCP-NODELAY-VAL.
 05 FILLER PIC 9(6) BINARY.
 05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.

If enabled, contains a 0.

If disabled, contains a 1.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GETSOCKOPT. The field is left-aligned and padded on the right
with blanks.

S
A halfword binary number specifying the socket descriptor for the socket requiring options.

OPTNAME
Set OPTNAME to the required option before you issue GETSOCKOPT. See the following table for a list
of the options and their unique requirements.

See the GETSOCKOPT command values information in z/OS Communications Server: IP Sockets
Application Programming Interface Guide and Reference for the numeric values of OPTNAME.

Note: COBOL programs cannot contain field names with the underscore character. Fields representing
the option name should contain dashes instead.

OPTLEN
Input parameter. A fullword binary field containing the length of the data returned in OPTVAL. See the
following table for determining on what to base the value of OPTLEN.

Parameter values returned to the application
OPTVAL

For the GETSOCKOPT API, OPTVAL will be an output parameter. See the following table for a list of
the options and their unique requirements.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

110 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

GIVESOCKET
The GIVESOCKET call is used to pass a socket from one process to another.

UNIX-based platforms use a command called FORK to create a new child process that has the same
descriptors as the parent process. You can use this new child process in the same way that you used the
parent process.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in the following sequence:

1. A process issues a GETCLIENTID call to get the job name of its region and its MVS subtask identifier.
This information is used in a GIVESOCKET call.

2. The process issues a GIVESOCKET call to prepare a socket for use by a child process.
3. The child process issues a TAKESOCKET call to get the socket. The socket now belongs to the child

process, and can be used by TCP/IP to communicate with another process.

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE. The child process must use
this new socket descriptor for all calls that use this socket. The socket descriptor that was passed to
the TAKESOCKET call must not be used.

4. After issuing the GIVESOCKET command, the parent process issues a SELECT command that waits for
the child to get the socket.

5. When the child gets the socket, the parent receives an exception condition that releases the SELECT
command.

6. The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

Sockets that have been given, but not taken for a period of four days, will be closed and will no longer be
available for taking. If a select for the socket is outstanding, it will be posted.

Table 23. GIVESOCKET call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Chapter 7. CALL instruction application programming interface 111

Table 23. GIVESOCKET call requirements (continued)

Condition Requirement

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 36 on page 112 shows an example of GIVESOCKET call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'GIVESOCKET'.
 01 S PIC 9(4) BINARY.
 01 CLIENT.
 03 DOMAIN PIC 9(8) BINARY.
 03 NAME PIC X(8).
 03 TASK PIC X(8).
 03 RESERVED PIC X(20).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

Figure 36. GIVESOCKET call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing GIVESOCKET. The field is left-aligned and padded on the right
with blanks.

S
A halfword binary number set to the socket descriptor of the socket to be given.

CLIENT
A structure containing the identifier of the application to which the socket should be given.
DOMAIN

A fullword binary number that must be set to decimal 2, indicating AF_INET, or decimal 19
indicating AF_INET6.

Note: A socket given by GIVESOCKET can be taken only by a TAKESOCKET with the same DOMAIN
(AF_INET or AF_INET6).

NAME
Specifies an 8-character field, left-aligned, padded to the right with blanks, that can be set to the
name of the MVS address space that will contain the application that is going to take the socket.

• If the socket-taking application is in the same address space as the socket-giving application (as
in CICS), NAME can be specified. The socket-giving application can determine its own address
space name by issuing the GETCLIENTID call.

• If the socket-taking application is in a different MVS address space (as in IMS), this field should
be set to blanks. When this is done, any MVS address space that requests the socket can have it.

TASK
Specifies an 8-byte field that can be set to blanks, or to the identifier of the socket-taking MVS
subtask. If this field is set to blanks, any subtask in the address space specified in the NAME field
can take the socket.

• As used by IMS and CICS, the field should be set to blanks.
• If TASK identifier is non-blank, the socket-receiving task should already be in execution when

the GIVESOCKET is issued.

112 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

INET6_IS_SRCADDR
The INET6_IS_SRCADDR call verifies whether the input IP address matches an IP address in the node
that conforms to all IPV6_ADDR_PREFERENCES flags specified in the call. You can use this call with IPv6
addresses or with IPv4-mapped IPv6 addresses.

You can use this call to test local IP addresses to verify whether these addresses have the characteristics
that are required by your application.

See RFC 5014 IPv6 Socket API for Source Address Selection for more information about the
INET6_IS_SRCADDR call. See Appendix B, “Related protocol specifications,” on page 279 for information
about accessing RFCs.

Table 24. INET6_IS_SRCADDR call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 37 on page 114 shows an example of INET6_IS_SRCADDR call instructions.

Chapter 7. CALL instruction application programming interface 113

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'INET6_IS_SRCADDR'.
 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 FLAGS PIC 9(8) BINARY
 88 IPV6-PREFER-SRC-HOME PIC 9(8) BINARY VALUE 1.
 88 IPV6-PREFER-SRC-COA PIC 9(8) BINARY VALUE 2.
 88 IPV6-PREFER-SRC-TMP PIC 9(8) BINARY VALUE 4.
 88 IPV6-PREFER-SRC-PUBLIC PIC 9(8) BINARY VALUE 8.
 88 IPV6-PREFER-SRC-CGA PIC 9(8) BINARY VALUE 16.
 88 IPV6-PREFER-SRC-NONCGA PIC 9(8) BINARY VALUE 32.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION NAME FLAGS ERRNO RETCODE.

Figure 37. INET6_IS_SRCADDR call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing INET6_IS_SRCADDR.
NAME

Specifies the AF_INET6 socket address structure for the address that is to be tested.

Requirement: You must specify an AF_INET6 address. You can specify an IPv6 address, or an IPv4-
mapped IPv6 address.

The IPv6 socket address structure specifies the following fields:
FAMILY

A halfword binary field that specifies the IPv6 addressing family. For TCP/IP the value is the
decimal value 19, indicating AF_INET6.

PORT
A halfword binary field. This field is ignored by INET6_IS_SRCADDR processing.

FLOWINFO
A fullword binary field that specifies the traffic class and flow label. This field is ignored by
INET6_IS_SRCADDR processing.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 IP address (network byte order) of the IP
address to be tested.

Rule: Specify an IPv4 address by using its IPv4-mapped IPv6 address format.

SCOPE-ID
A fullword binary field that identifies a set of appropriate interfaces for the scope of the address
that is specified in the IP-ADDRESS field. The value 0 indicates that the SCOPE-ID field does not
identify the set of interfaces to be used.

Requirements:

• If the IP address is a link-local address, this field must be set to a nonzero value.
• If the IP address is not a link-local address, this field must be set to 0.

114 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

FLAGS
A fullword binary field that contains one or more valid IPV6_ADDR_PREFERENCES flags.

Flag name Binary value
Decimal
value Description

IPV6_PREFER_SRC_HOME X'00000001' 1 Test whether the input IP
address is a home address.1

IPV6_PREFER_SRC_COA X'00000002' 2 Test whether the input IP
address is a care-of address.2

IPV6_PREFER_SRC_TMP X'00000004' 4 Test whether the input IP
address is a temporary address.

IPV6_PREFER_SRC_PUBLIC X'00000008' 8 Test whether the input IP
address is a public address.

IPV6_PREFER_SRC_CGA X'00000010' 16 Test whether the input IP
address is cryptographically
generated.2

IPV6_PREFER_SRC_NONCGA X'00000020' 32 Test whether the input IP
address is not cryptographically
generated.1

Note:

1. Any valid IP address that is known to the stack satisfies this flag.
2. z/OS Communications Server does not support this type of address. The call always returns

FALSE if this flag is specified with a valid IP address that is known to the stack.

Tips:

• The SEZAINST(EZACOBOL) and SEZAINST(CBLOCK) samples contain mappings for these flags. For
assembler programs, the flags are defined in the system maclib member BPXYSOCK.

• Some of these flags are contradictory, for example:

– The flag IPV6_PREFER_SRC_HOME contradicts the flag IPV6_PREFER_SRC_COA.
– The flag IPV6_PREFER_SRC_CGA contradicts the flag IPV6_PREFER_SRC_NONCGA.
– The flag IPV6_PREFER_SRC_TMP contradicts the flags IPV6_PREFER_SRC_PUBLIC.

Result: If you specify contradictory flags in the call, the result is FALSE.

Parameter values returned to the application
ERRNO

A fullword binary field. If the RETCODE value is negative, the field contains an error number. See
Appendix A, “Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

FALSE

The call was successful and the result is FALSE. The input AF_INET6 address corresponds to an IP
address on the node, but does not conform to one or more IPV6_ADDR_PREFERENCES flags that
are specified in the call.

Chapter 7. CALL instruction application programming interface 115

1
TRUE

The call was successful and the result is TRUE. The input AF_INET6 address corresponds to an
IP address on the node and conforms to all IPV6_ADDR_PREFERENCES flags that are specified in
the call.

-1
Check ERRNO for an error code.

INITAPI
The INITAPI call connects an application to the TCP/IP interface. Almost all sockets programs that are
written in COBOL, PL/I, or assembler language must issue the INITAPI socket command before they issue
other socket commands.

The exceptions to this rule are the following calls, which, when issued first, will generate a default
INITAPI call.

• GETCLIENTID
• GETHOSTID
• GETHOSTNAME
• GETIBMOPT
• SELECT
• SELECTEX
• SOCKET
• TAKESOCKET

Table 25. INITAPI call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 38 on page 117 shows an example of INITAPI call instructions.

116 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'INITAPI'.
 01 MAXSOC PIC 9(4) BINARY.
 01 IDENT.
 02 TCPNAME PIC X(8).
 02 ADSNAME PIC X(8).
 01 SUBTASK PIC X(8).
 01 MAXSNO PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC IDENT SUBTASK
 MAXSNO ERRNO RETCODE.

Figure 38. INITAPI call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing INITAPI. The field is left-aligned and padded on the right with
blanks.

MAXSOC
A halfword binary field set to the maximum number of sockets this application will ever have open
at one time. The maximum number is 65535 and the minimum number is 50. This value is used to
determine the amount of memory that is allocated for socket control blocks and buffers. If less than
50 are requested, MAXSOC defaults to 50.

IDENT
A structure containing the identities of the TCP/IP address space and the calling program’s address
space. Specify IDENT on the INITAPI call from an address space.
TCPNAME

An 8-byte character field that should be set to the MVS job name of the TCP/IP address space with
which you are connecting.

ADSNAME
An 8-byte character field set to the identity of the calling program's address space. It is the name
of the CICS startup job. For explicit-mode IMS server programs, use the TIMSrvAddrSpc field
passed in the TIM. If ADSNAME is not specified, the system derives a value from the MVS control
block structure.

SUBTASK
Indicates an 8-byte field that contains a unique subtask identifier, which is used to distinguish
between multiple subtasks within a single address space. Use your own job name as part of your
subtask name. This ensures that, if you issue more than one INITAPI command from the same
address space, each SUBTASK parameter is unique.

Restriction: EZASOKET calls outside of the CICS environment are not reentrant. If EZASOKET is to
be used by a multithread or multitask application, a separate copy must be loaded for each thread or
task. See z/OS Communications Server: IP CICS Sockets Guide for information about use in the CICS
environment.

Parameter values returned to the application
MAXSNO

A fullword binary field that contains the highest socket number assigned to this application. The
lowest socket number is 0. If you have 50 sockets, they are numbered from 0 to 49. If MAXSNO is not
specified, the value for MAXSNO is 49.

Chapter 7. CALL instruction application programming interface 117

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

IOCTL
The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL socket command, you must load a value that represents the characteristic that
you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are passed to and returned from
IOCTL. The length of REQARG and RETARG is determined by the value that you specify in COMMAND. See
Table 27 on page 125 for information about REQARG and RETARG.

Table 26. IOCTL call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 39 on page 119 shows an example of IOCTL call instructions.

118 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE 'IOCTL'.
 01 S PIC 9(4) BINARY.
 01 COMMAND PIC 9(8) BINARY.

 01 IFREQ.
 03 NAME PIC X(16).
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 01 IFREQOUT.
 03 NAME PIC X(16).
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 01 GRP-IOCTL-TABLE.
 02 IOCTL-ENTRY OCCURS 100 TIMES.
 03 NAME PIC X(16).
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 ADDRESS PIC 9(8) BINARY.
 03 NULLS PIC X(8).

 01 IOCTL-REQARG USAGE IS POINTER.
 01 IOCTL-RETARG USAGE IS POINTER.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND REQARG
 RETARG ERRNO RETCODE.

Figure 39. IOCTL call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing IOCTL. The field is left-aligned and padded to the right with
blanks.

S
A halfword binary number set to the descriptor of the socket to be controlled.

COMMAND
To control an operating characteristic, set this field to one of the following symbolic names. A value in
a bit mask is associated with each symbolic name. By specifying one of these names, you are turning
on a bit in a mask which communicates the requested operating characteristic to TCP/IP.
FIONBIO

Sets or clears blocking status.
FIONREAD

Returns the number of immediately readable bytes for the socket.
SIOCATMARK

Determines whether the current location in the data input is pointing to out-of-band data.
SIOCGHOMEIF6

Requests all IPv6 home interfaces. To request OSM interfaces the application must have READ
authorization to the EZB.OSM.sysname.tcpname resource.

• When the SIOCGHOMEIF6 IOCTL is issued, the REGARQ must contain a Network Configuration
Header. The NETCONFHDR is defined in the SYS1.MACLIB(BPXYIOC6) for assembly language.
The following fields are input fields and must be filled out:

Chapter 7. CALL instruction application programming interface 119

NchEyeCatcher
Contains eye catcher '6NCH'

NchIoctl
Contains the command code

NchBufferLength
Buffer length large enough to contain all the IPv6 interface records. Each interface record is
length of HOME-IF-ADDRESS. If buffer is not large enough, then errno will be set to ERANGE
and the NchNumEntryRet will be set to number of interfaces. Based on NchNumEntryRet
and size of HOME-IF-ADDRESS, calculate the necessary storage to contain the entire list.

NchBufferPtr
This is a pointer to an array of HOME-IF structures returned on a successful call. The size will
depend on the number of qualifying interfaces returned.

NchNumEntryRet
If return code is 0 this will be set to number of HOME-IF-ADDRESS returned. If errno is
ERANGE, then will be set to number of qualifying interfaces. No interfaces are returned.
Recalculate The NchBufferLength based on this value times the size of HOME-IF-ADDRESS.

REQARG and RETARG
Point to the arguments that are passed between the calling program and IOCTL. The length
of the argument is determined by the COMMAND request. REQARG is an input parameter
and is used to pass arguments to IOCTL. RETARG is an output parameter and is used for
arguments returned by IOCTL. For the lengths and meanings of REQARG and RETARG for
each COMMAND type, see Table 27 on page 125.

Working-Storage Section.
 01 SIOCGHOMEIF6-VAL pic s9(10) binary value 3222599176.
 01 SIOCGHOMEIF6-REDEF REDEFINES SIOCGHOMEIF6-VAL.
 05 FILLER PIC 9(6) COMP.
 05 SIOCGHOMEIF6 PIC 9(8) COMP.
 01 IOCTL-RETARG USAGE IS POINTER.
 01 NET-CONF-HDR.
 05 NCH-EYE-CATCHER PIC X(4) VALUE '6NCH'.
 05 NCH-IOCTL PIC 9(8) BINARY.
 05 NCH-BUFFER-LENTH PIC 9(8) BINARY.
 05 NCH-BUFFER-PTR USAGE IS POINTER.
 05 NCH-NUM-ENTRY-RET PIC 9(8) BINARY.
 01 HOME-IF.
 03 HOME-IF-ADDRESS.
 05 FILLER PIC 9(16) BINARY.

Linkage Section.

 01 L1.
 03 NetConfHdr.
 05 NchEyeCatcher pic x(4).
 05 NchIoctl pic 9(8) binary.
 05 NchBufferLength pic 9(8) binary.
 05 NchBufferPtr usage is pointer.
 05 NchNumEntryRet pic 9(8) binary.
 * Allocate storage based on your need.
 03 Allocated-Storage pic x(nn).

 Procedure Division using L1.
 move '6NCH' to NchEyeCatcher.
 set NchBufferPtr to address of Allocated-Storage.
 * Set NchBufferLength to the length of your allocated storage.
 move nn to NchBufferLength.
 move SIOCGHOMEIF6 to NchIoctl.
 Call 'EZASOKET' using soket-ioctl socket-descriptor
 SIOCGHOMEIF6
 NETCONFHDR NETCONFHDR
 errno retcode.

Figure 40. COBOL language example for SIOCGHOMEIF6

SIOCGIFADDR
Requests the IPv4 network interface address for a given interface name. For assembler, see the
IOCN_IFNAME field in the SYS1.MACLIB(BPXYIOCC) API. For COBOL, see the IFR-NAME field in
the SEZAINST(EZACOBOL) API. For PL/I, see the IFR_NAME field in the SEZAINST(CBLOCK) API.

120 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

SIOCGIFBRDADDR
Requests the IPv4 network interface broadcast address for a given interface name. For
assembler, see the IOCN_IFNAME field in the SYS1.MACLIB(BPXYIOCC) API. For COBOL, see
the IFR-NAME field in the SEZAINST(EZACOBOL) API. For PL/I, see the IFR_NAME field in the
SEZAINST(CBLOCK) API.

SIOCGIFCONF
Requests the IPv4 network interface configuration. The configuration is a variable number of
32-byte structures. For assembler, see the IOCN_IFREQ field in the SYS1.MACLIB(BPXYIOCC) API
for the structure format. For COBOL, see the IFREQ field in the SEZAINST(EZACOBOL) API for the
structure format. For PL/I, see the IFREQ field in the SEZAINST(CBLOCK) API for the structure
format.

• When IOCTL is issued, REQARG must contain the length of the array to be returned. To
determine the length of REQARG, multiply the structure length (array element) by the number of
interfaces requested. The maximum number of array elements that TCP/IP can return is 100.

• When IOCTL is issued, RETARG must be set to the beginning of the storage area that you have
defined in your program for the array to be returned.

SIOCGIFDSTADDR
Requests the network interface destination address for a given interface name. For assembler, see
the IOCN_IFNAME field in the SYS1.MACLIB(BPXYIOCC) API. For COBOL, see the IFR-NAME field
in the SEZAINST(EZACOBOL) API. For PL/I, see the IFR_NAME field in the SEZAINST(CBLOCK)
API.

SIOCGIFMTU
Requests the IPv4 network interface MTU (maximum transmission unit) for a given interface
name. For assembler, see the IOCN_IFNAME field in the SYS1.MACLIB(BPXYIOCC) API. For
COBOL, see the IFR-NAME field in the SEZAINST(EZACOBOL) API. For PL/I, see the IFR_NAME
field in the SEZAINST(CBLOCK) API.

SIOCGIFNAMEINDEX
Requests all interface names and interface indexes including local loopback but excluding VIPAs.
Information is returned for both IPv4 and IPv6 interfaces whether they are active or inactive.
For IPv6 interfaces, information is returned for an interface only if it has at least one available
IP address. To request OSM interfaces the application must have READ authorization to the
EZB.OSM.sysname.tcpname resource.

The configuration consists of IF_NAMEINDEX structure, which is defined in
SYS1.MACLIB(BPX1IOCC) for the assembly language.

• When the SIOCGIFNAMEINDEX IOCTL is issued, the first word in REQARG must contain the
length (in bytes) to contain an IF-NAME-INDEX structure to return the interfaces. The formula to
compute this length is as follows:

1. Determine the number of interfaces expected to be returned upon successful completion of
this command.

2. Multiply the number of interfaces by the array element (size of IF-NIINDEX, IF-NINAME, and
IF-NIEXT) to get the size of the array element.

3. Add the size of the IF-NITOTALIF and IF-NIENTRIES to the size of the array to get the total
number of bytes needed to accommodate the name and index information returned.

• When IOCTL is issued, RETARG must be set to the address of the beginning of the area in your
program's storage that is reserved for the IF-NAMEINDEX structure that is to be returned by
IOCTL.

• The command 'SIOCGIFNAMEINDEX' returns a variable number of all the qualifying network
interfaces.

Chapter 7. CALL instruction application programming interface 121

 WORKING-STORAGE SECTION.
 01 SIOCGIFNAMEINDEX-VAL pic 9(10) binary value 1073804803.
 01 SIOCGIFNAMEINDEX-REDEF REDEFINES SIOCGIFNAMEINDEX-VAL.
 05 FILLER PIC 9(6) COMP.
 05 SIOCGIFNAMEINDEX PIC 9(8) COMP.
 01 reqarg pic 9(8) binary.
 01 reqarg-header-only pic 9(8) binary.
 01 IF-NIHEADER.
 05 IF-NITOTALIF PIC 9(8) BINARY.
 05 IF-NIENTRIES PIC 9(8) BINARY.
 01 IF-NAME-INDEX-ENTRY.
 05 IF-NIINDEX PIC 9(8) BINARY.
 05 IF-NINAME PIC X(16).
 05 IF-NINAMETERM PIC X(1).
 05 IF-NIRESV1 PIC X(3).
 01 OUTPUT-STORAGE PIC X(500).
 Procedure Division.
 move 8 to reqarg-header-only.
 Call 'EZASOKET' using soket-ioctl socket-descriptor
 SIOCGIFNAMEINDEX
 REQARG-HEADER-ONLY IF-NIHEADER
 errno retcode.
 move 500 to reqarg.
 Call 'EZASOKET' using soket-ioctl socket-descriptor
 SIOCGIFNAMEINDEX
 REQARG OUTPUT-STORAGE
 errno retcode.

Figure 41. COBOL language example for SIOCGIFNAMEINDEX

SIOCGIPMSFILTER
Requests a list of the IPv4 source addresses that comprise the source filter, with the current
mode on a given interface and a multicast group for a socket. The source filter can include
or exclude the set of source address, depending on the filter mode (MCAST_INCLUDE or
MCAST_EXCLUDE). When the SIOCGIPMSFILTER IOCTL is issued, the REQARG parameter must
contain a IP_MSFILTER structure, which is defined in SYS1.MACLIB(BPXYIOCC) for assembly
language, in SEZAINST(CBLOCK) for PL/I, and in SEZAINST(EZACOBOL) for COBOL. The
IP_MSFILTER must include an interface address (input), a multicast address (input), filter mode
(output), the number of source addresses in the following array (input and output), and an array
of source addresses (output). On input, the number of source addresses is the number of source
addresses that will fit in the input array. On output, the number of source addresses contains
the total number of source filters in the output array. If the application does not know the size
of the source list prior to processing, it can make a reasonable guess (for example, 0), and if
when the call completes the number of source addresses is a greater value, the IOCTL can be
repeated with a buffer that is large enough. That is, on output, the number of source addresses is
always updated to be the total number of sources in the filter, but the array holds as many source
addresses as will fit, up to the minimum of the array size passed in as the input number.

Calculate the size of IF_MSFILTER value as follows:

1. Determine the number of expected source addresses.
2. Multiply the number of source addresses by the array element (size of the IMSF_SrcEntry

value) to determine the size of all array elements.
3. Add the size of all array elements to the size of the IMSF_Header value to determine the total

number of bytes needed to accommodate the source addresses information that is returned.

SIOCGMSFILTER
Requests a list of the IPv4 or IPv6 source addresses that comprise the source filter, with the
current mode on a given interface index and a multicast group for a socket. The source filter can
include or exclude the set of source address, depending on the filter mode (MCAST_INCLUDE
or MCAST_EXCLUDE). When the SIOCGMSFILTER IOCTL is issued, the REQARG parameter must
contain a GROUP_FILTER structure, which is defined in SYS1.MACLIB(BPXYIOCC) for assembler ,
in SEZAINST(CBLOCK) for PL/I, and in SEZAINST(EZACOBOL) for COBOL. The GROUP_FILTER
option must include an interface index (input), a socket address structure of the multicast address
(input), filter mode (output), the number of source addresses in the following array (output), and
an array of the socket address structure of source addresses (input and output). On input, the

122 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

number of source addresses is the number of source addresses that will fit in the input array. On
output, the number of source addresses contains the total number of source filters in the output
array. If the application does not know the size of the source list prior to processing, it can make a
reasonable guess (for example, 0), and if when the call completes the number of source addresses
is a greater value, the IOCTL can be repeated with a buffer that is large enough. That is, on output,
the number of source addresses is always updated to be the total number of sources in the filter,
but the array holds as many source addresses as will fit, up to the minimum of the array size
passed in as the input number.

Calculate the size of the GROUP_FILTER value as follows:

1. Determine the number of source addresses expected.
2. Multiply the number of source addresses by the array element (size of the GF_SrcEntry value)

to determine the size of all array elements.
3. Add the size of all array elements to the size of the GF_Header value to determine the total

number of bytes needed to accommodate the source addresses information returned.

SIOCGPARTNERINFO
Provides an interface for an application to retrieve security information about its partner. When
you issue the SIOCGPARTNERINFO IOCTL, the REQARG parameter must contain a PartnerInfo
structure. The PartnerInfo structure is defined in members within SEZANMAC; EZBPINF1
defines the PL/I layout, EZBPINFA defines the assembler layout, and EZBPINFB defines the
COBOL layout. For more information about using the SIOCGPARTNERINFO IOCTL, see z/OS
Communications Server: IP Programmer's Guide and Reference.

SIOCSAPPLDATA
The SIOCSAPPLDATA IOCTL enables an application to set 40 bytes of user-specified application
data against a socket endpoint. You can also use this application data to identify socket
endpoints in interfaces such as Netstat, SMF, or network management applications. When
the SIOCSAPPLDATA IOCTL is issued, the REQARG parameter must contain a SetApplData
structure as defined by the EZBYAPPL macro. See the CBLOCK and the EZACOBOL samples
for the equivalent SetApplData and SetADcontainer structure definitions for PL/I and COBOL
programming environments. See z/OS Communications Server: IP Programmer's Guide and
Reference for more information about programming the SIOCSAPPLDATA IOCTL.

SetAD_buffer: The user-defined application data is 40 bytes of data that identifies the endpoint
with the application. You can obtain this application data from the following sources:

• Netstat reports. The information is displayed in the ALL/-A report. If you use the APPLDATA
modifier, then the information also is displayed on the ALLConn/-a and COnn/-c reports.

• The SMF 119 TCP connection termination record. See TCP connection termination record
(subtype 2) in z/OS Communications Server: IP Programmer's Guide and Reference for more
information.

• Network management interfaces. See Network management interfaces in z/OS Communications
Server: IP Programmer's Guide and Reference for more information.

Consider the following guidelines:

• The application must document the content, format and meaning of the ApplData strings that it
associates with the sockets that it owns.

• The application should uniquely identify itself with printable EBCDIC characters at the beginning
of the string. Strings beginning with 3-character IBM product identifiers, such as TCP/IP's EZA or
EZB, are reserved for IBM use. IBM product identifiers begin with a letter in the range A-I.

• Use printable EBCDIC characters for the entire string to enable searching with Netstat filters.

Tip: Separate application data elements with a blank for easier reading.

SIOCSIPMSFILTER
Sets a list of the IPv4 source addresses that comprise the source filter, with the current mode on a
given interface and a multicast group for a socket. The source filter can include or exclude the set
of source address, depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE). When

Chapter 7. CALL instruction application programming interface 123

the SIOCSIPMSFILTER IOCTL is issued, the REQARG parameter must contain a IP_MSFILTER
structure, which is defined in SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for
PL/I and in SEZAINST(EZACOBOL) for COBOL. The IP_MSFILTER option must include an interface
address, a multicast address, filter mode, the number of source addresses in the following array,
and an array of source addresses.

Calculate the size of the IF_MSFILTER value as follows:

1. Determine the number of expected source addresses.
2. Multiply the number of source addresses by the array element (size of the IMSF_SrcEntry

value) to determine the size of all array elements.
3. Add the size of all array elements to the size of the IMSF_Header value to determine the total

number of bytes needed to accommodate the source addresses information that is returned.

SIOCSMSFILTER
Sets a list of the IPv4 or IPv6 source addresses that comprise the source filter, along with the
current mode on a given interface index and a multicast group for a socket. The source filter
can include or exclude the set of source address, depending on the filter mode (INCLUDE or
EXCLUDE). When the SIOCSMSFILTER IOCTL is issued, the REQARG parameter must contain
a GROUP_FILTER structure which is defined in SYS1.MACLIB(BPXYIOCC) for assembler, in
SEZAINST(CBLOCK) for PL/I, and in SEZAINST(EZACOBOL) for COBOL. The GROUP_FILTER option
must include an interface index, a socket address structure of the multicast address, filter mode,
the number of source addresses in the following array, and an array of the socket address
structure of source addresses.

Calculate the size of GROUP_FILTER as follows:

1. Determine the number of source addresses expected.
2. Multiply the number of source addresses by the array element (size of the GF_SrcEntry value)

to get the size of all array elements.
3. Add the size of all array elements to the size of the GF_Header value to get the total number of

bytes needed to accommodate the source addresses information returned.

SIOCSPARTNERINFO
The SIOCSPARTNERINFO IOCTL sets an indicator to retrieve the partner security credentials
during connection setup and saves the information, enabling an application to issue a
SIOCGPARTNERINFO IOCTL without suspending the application, or at least minimizing the time
it takes to retrieve the information. The SIOCSPARTNERINFO IOCTL must be issued prior to
the SIOCGPARTNERINFO IOCTL. When you issue the SIOCSPARTNERINFO IOCTL, the REQARG
parameter must contain a constant value, PI_REQTYPE_SET_PARTNERDATA. This constant is
defined in members within SEZANMAC; EZBPINF1 defines the PL/I layout, EZBPINFA defines the
assembler layout, and EZBPINFB defines the COBOL layout. For more information about using
the SIOCSPARTNERINFO IOCTL, see z/OS Communications Server: IP Programmer's Guide and
Reference.

SIOCTTLSCTL
Controls Application Transparent Transport Layer Security (AT-TLS) for the connection. REQARG
and RETARG must contain a TTLS_IOCTL structure. If a partner certificate is requested, the
TTLS_IOCTL must include a pointer to additional buffer space and the length of that buffer.
Information is returned in the TTLS_IOCTL structure. If a partner certificate is requested and one
is available, it is returned in the additional buffer space. The TTLS_IOCTL structure is defined in
members within SEZANMAC. EZBZTLS1 defines the PL/I layout, EZBZTLSP defines the assembler
layout, and EZBZTLSB defines the COBOL layout. For more usage details, see the Application
Transparent TLS (AT-TLS) information in z/OS Communications Server: IP Programmer's Guide
and Reference.

Restriction: Use of this ioctl for functions other than query requires that the AT-TLS policy
mapped to the connection be defined with the ApplicationControlled parameter set to On.

124 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

REQARG and RETARG
Points to arguments that are passed between the calling program and IOCTL. The length of the
argument is determined by the COMMAND request. REQARG is an input parameter or an output
parameter and is used to pass and receive arguments to and from IOCTL. RETARG is an output
parameter and receives arguments from IOCTL. The REQARG and RETARG parameters are described
in Table 27 on page 125.

Table 27. IOCTL call arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO X'8004A77E' 4 Set socket mode to: X'00'=blocking,
X'01'=nonblocking.

0 Not used.

FIONREAD
X'4004A77F'

0 Not used. 4 Number of characters available
for read.

SIOCATMARK
X'4004A707'

0 Not used. 4 X'00'= not at OOB data

X'01'= at OOB data.

SIOCGHOMEIF6
X'C014F608'

20 NetConfHdr See Figure 40 on page 120
NetConfHdr.

SIOCGIFADDR
X'C020A70D'

32 First 16 bytes -
 interface name.
Last 16 bytes -
not used.

32 Network interface address.
For assembler, see the
IOCN_SADDRIF field in
the SYS1.MACLIB(BPXYIOCC)
API. For COBOL, see the
IFR-ADDR field in the
SEZAINST(EZACOBOL) API. For
PL/I, see the IFR_ADDR field in
the SEZAINST(CBLOCK) API.

SIOCGIFBRDADDR
X'C020A712'

32 First 16 bytes -
interface name.
Last 16 bytes -
not used.

32 Network interface address.
For assembler, see the
IOCN_SADDRIFBROADCAST
field in the
SYS1.MACLIB(BPXYIOCC) API.
For COBOL, see the IFR-
BROADADDR field in the
SEZAINST(EZACOBOL) API. For
PL/I, see the IFR_BROADADDR
field in the SEZAINST(CBLOCK)
API.

SIOCGIFCONF
X'C008A714'

8 Size of RETARG. See
note1.

SIOCGIFDSTADDR
X'C020A70F'

32 First 16 bytes -
interface name.
Last 16 bytes -
not used.

32 Destination interface address.
For assembler, see the
IOCN_SADDRIFDEST field in
the SYS1.MACLIB(BPXYIOCC)
API. For COBOL, see the
IFR-DSTADDR field in the
SEZAINST(EZACOBOL) API. For
PL/I, see the IFR_DSTADDR field
in the SEZAINST(CBLOCK) API.

Chapter 7. CALL instruction application programming interface 125

Table 27. IOCTL call arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG

SIOCGIFMTU
X'C020A726'

32 First 16 bytes -
interface name.
Last 16 bytes -
not used.

32 IPv4 interface MTU
(maximum transmission unit).
For assembler, see the
IOCN_MTUSIZE field in
the SYS1.MACLIB(BPXYIOCC)
API. For COBOL, see
the IFR-MTU field in the
SEZAINST(EZACOBOL) API. For
PL/I, see the IFR_MTU field in
the SEZAINST(CBLOCK) API.

SIOCGIFNAMEINDEX
X'4000F603'

4 First 4 bytes size of return buffer. See Figure 41 on page 122 IF-
NAMEINDEX .

SIOCGIPMSFILTER
X'C000A724'

– See IP_MSFILTER structure in
macro BPXYIOCC. See note 2.

0 Not used

SIOCGMSFILTER
X'C000F610'

– See GROUP_FILTER structure in
macro BPXYIOCC. See note 3

0 Not used

SIOCGPARTNERINFO
X'C000F612'

– For the PartnerInfo structure layout,
see SEZANMAC(EZBPINFA) for
assembler, SEZANMAC(EZBPINF1)
for PL/I, and
SEZANMAC(EZBPINFB) for COBOL.
See note 4.

0 Not used

SIOCSAPPLDATA
X'8018D90C'

– See SETAPPLDATA structure in
macro EZBYAPPL

0 Not used

SIOCSIPMSFILTER
X'8000A725'

– See IP_MSFILTER structure in
macro BPXYIOCC. See note 2.

0 Not used

SIOCSMSFILTER
X'8000F611'

– See GROUP_FILTER structure in
macro BPXYIOCC. See note 3

0 Not used

SIOCSPARTNERINFO
X'8004F613'

4 See
PI_REQTYPE_SET_PARTNERDATA
in SEZANMAC(EZBPINFA) for
assembler, SEZANMAC(EZBPINF1)
for PL/I, and
SEZANMAC(EZBPINFB) for COBOL.

0 Not used

SIOCTTLSCTL
X'C038D90B'

56 For IOCTL structure layout,
see SEZANMAC(EZBZTLS1) for
PL/I, SEZANMAC(EZBZTLSP)
for assembler, and
SEZANMAC(EZBZTLSB) for COBOL.

56 For IOCTL structure layout,
see SEZANMAC(EZBZTLS1) for
PL/I, SEZANMAC(EZBZTLSP)
for assembler, and
SEZANMAC(EZBZTLSB) for
COBOL.

126 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 27. IOCTL call arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG

Note:

1. When you call IOCTL with the SIOCGIFCONF command set, REQARG should contain the length in bytes of
RETARG. Each interface is assigned a 32-byte array element and REQARG should be set to the number of
interfaces times 32. TCP/IP Services can return up to 100 array elements.

2. The size of the IP_MSFILTER structure must be equal to or greater than the size of the IMSF_Header value.
3. The size of the GROUP_FILTER structure must be equal to or greater than the size of GF_Header value.
4. The size of the PartnerInfo structure must be equal to or greater than the PI_FIXED_SIZE value.

Parameter values returned to the application
RETARG

Returns an array whose size is based on the value in COMMAND. See Table 27 on page 125 for
information about REQARG and RETARG.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

The COMMAND SIOGIFCONF returns a variable number of network interface configurations. Figure 42 on
page 127 contains an example of a COBOL II routine that can be used to work with such a structure.

Note: This call can be programmed only in languages that support address pointers. Figure 42 on page
127 shows a COBOL II example for SIOCGIFCONF.

 WORKING-STORAGE SECTION.
 77 REQARG PIC 9(8) COMP.
 77 COUNT PIC 9(8) COMP VALUE max number of interfaces.
 LINKAGE SECTION.
 01 RETARG.
 05 IOCTL-TABLE OCCURS 1 TO max TIMES DEPENDING ON COUNT.
 10 NAME PIC X(16).
 10 FAMILY PIC 9(4) BINARY.
 10 PORT PIC 9(4) BINARY.
 10 ADDR PIC 9(8) BINARY.
 10 NULLS PIC X(8).
 PROCEDURE DIVISION.
 MULTIPLY COUNT BY 32 GIVING REQARQ.
 CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND
 REQARG RETARG ERRNO RETCODE.

Figure 42. COBOL II example for SIOCGIFCONF

LISTEN
The LISTEN call:

• Completes the bind, if BIND has not already been called for the socket.
• Creates a connection-request queue of a specified length for incoming connection requests.

Chapter 7. CALL instruction application programming interface 127

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from clients. When a
connection request is received, a new socket is created by a subsequent ACCEPT call, and the original
socket continues to listen for additional connection requests. The LISTEN call converts an active socket
to a passive socket and conditions it to accept connection requests from clients. Once a socket becomes
passive it cannot initiate connection requests.

Table 28. LISTEN call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 43 on page 128 shows an example of LISTEN call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'LISTEN'.
 01 S PIC 9(4) BINARY.
 01 BACKLOG PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

Figure 43. LISTEN call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing LISTEN. The field is left-aligned and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor.

BACKLOG
A fullword binary number set to the number of communication requests to be queued.

Rule: The BACKLOG value specified on the LISTEN call is limited to the value configured by the
SOMAXCONN statement in the stack's TCPIP PROFILE (default=10); no error is returned if a larger
backlog is requested. SOMAXCONN might need to be updated if a larger backlog is desired. see z/OS
Communications Server: IP Configuration Reference for details.

128 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

NTOP
The NTOP call converts an IP address from its numeric binary form into a standard text presentation form.
On successful completion, NTOP returns the converted IP address in the buffer provided.

Table 29. NTOP call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 44 on page 130 shows an example of NTOP call instructions.

Chapter 7. CALL instruction application programming interface 129

 WORKING-STORAGE SECTION.
 01 SOC-ACCEPT-FUNCTION PIC X(16) VALUE IS 'ACCEPT'.
 01 SOC-NTOP-FUNCTION PIC X(16) VALUE IS 'NTOP'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.
 01 NTOP-FAMILY PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 01 PRESENTABLE-ADDRESS PIC X(45).
 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY.

 PROCEDURE DIVISION.

 CALL 'EZASOKET' USING SOC-ACCEPT-FUNCTION S NAME
 ERRNO RETCODE.
 CALL 'EZASOKET' USING SOC-NTOP-FUNCTION NTOP-FAMILY IP-ADDRESS
 PRESENTABLE-ADDRESS
 PRESENTABLE-ADDRESS-LEN ERRNO RETURN-CODE.

Figure 44. NTOP call instruction example

Parameter values set by the application
Keyword

Description
FAMILY

The addressing family for the IP address being converted. The value of decimal 2 must be specified
for AF_INET and 19 for AF_INET6.

IP-ADDRESS
A field containing the numeric binary form of the IPv4 or IPv6 address being converted. For an IPv4
address this field must be a fullword and for an IPv6 address this field must be 16 bytes. The address
must be in network byte order.

Parameter values returned to the application
Keyword

Description
PRESENTABLE-ADDRESS

A field used to receive the standard text presentation form of the IPv4 or IPv6 address being
converted. For IPv4 the address will be in dotted-decimal format and for IPv6 the address will be
in colon-hex format. The size of the IPv4 address will be a maximum of 15 bytes and the size of the
converted IPv6 address will be a maximum of 45 bytes. Consult the value returned in PRESENTABLE-
ADDRESS-LEN for the actual length of the value in PRESENTABLE-ADDRESS.

PRESENTABLE-ADDRESS-LEN
Initially, an input parameter. The address of a binary halfword field that is used to specify the length of
DSTADDR field on input and upon a successful return will contain the length of converted IP address.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

130 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

See Appendix A, “Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
–1

Check ERRNO for an error code.

PTON
The PTON call converts an IP address in its standard text presentation form to its numeric binary form. On
successful completion, PTON returns the converted IP address in the buffer provided.

Table 30. PTON call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 45 on page 132 shows an example of PTON call instructions.

Chapter 7. CALL instruction application programming interface 131

 WORKING-STORAGE SECTION.
 01 SOC-BIND-FUNCTION PIC X(16) VALUE IS 'BIND'.
 01 SOC-PTON-FUNCTION PIC X(16) VALUE IS 'PTON'.
 01 S PIC 9(4) BINARY.

 * IPv4 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 AF-INET PIC 9(8) BINARY VALUE 2.
 01 AF-INET6 PIC 9(8) BINARY VALUE 19.

 * IPv4 address.
 01 PRESENTABLE-ADDRESS PIC X(45).
 01 PRESENTABLE-ADDRESS-IPV4 REDEFINES PRESENTABLE-ADDRESS.
 05 PRESENTABLE-IPV4-ADDRESS PIC X(15) VALUE '192.26.5.19'.
 05 FILLER PIC X(30).
 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 11.

 * IPv6 address.
 01 PRESENTABLE-ADDRESS PIC X(45)
 VALUE '12f9:0:0:c30:123:457:9cb:1112'.
 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 29.

 * IPv4-mapped IPv6 address.
 01 PRESENTABLE-ADDRESS PIC X(45)
 VALUE '12f9:0:0:c30:123:457:192.26.5.19'.
 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 32.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 * IPv4 address.
 CALL 'EZASOKET' USING SOC-PTON-FUNCTION AF-INET PRESENTABLE-ADDRESS
 PRESENTABLE-ADDRESS-LEN IP-ADDRESS ERRNO RETURN-CODE.
 * IPv6 address.
 CALL 'EZASOKET' USING SOC-PTON-FUNCTION AF-INET6 PRESENTABLE-ADDRESS
 PRESENTABLE-ADDRESS-LEN IP-ADDRESS ERRNO RETURN-CODE.
 CALL 'EZASOKET' USING SOC-BIND-FUNCTION S NAME ERRNO RETURN-CODE.

Figure 45. PTON call instruction example

Parameter values set by the application
Keyword

Description
FAMILY

The addressing family for the IP address being converted. The value of decimal 2 must be specified
for AF_INET and 19 for AF_INET6.

PRESENTABLE-ADDRESS
A field containing the standard text presentation form of the IPv4 or IPv6 address being converted.
For IPv4 the address will be in dotted-decimal format and for IPv6 the address will be in colon-hex
format.

PRESENTABLE-ADDRESS-LEN
Input parameter. The address of a binary halfword field that must contain the length of the IP address
to be converted.

132 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Parameter values returned to the application
Keyword

Description
IP-ADDRESS

A field containing the numeric binary form of the IPv4 or IPv6 address being converted. For an IPv4
address this field must be a fullword and for an IPv6 address this field must be 16 bytes. The address
must be in network byte order.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, ERRNO contains a valid error
number. Otherwise, ignore the ERRNO field.

See Appendix A, “Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
–1

Check ERRNO for an error code.

READ
The READ call reads the data on socket s. This is the conventional TCP/IP read data operation. If a
datagram packet is too long to fit in the supplied buffer, datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket and program A sends 1000 bytes,
each call to this function can return any number of bytes, up to the entire 1000 bytes. The number of
bytes returned will be contained in RETCODE. Therefore, programs using stream sockets should place this
call in a loop that repeats until all data has been received.

Note: See “EZACIC05 ” on page 189 for a subroutine that will translate ASCII input data to EBCDIC.

Table 31. READ call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 46 on page 134 shows an example of READ call instructions.

Chapter 7. CALL instruction application programming interface 133

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'READ'.
 01 S PIC 9(4) BINARY.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NBYTE BUF
 ERRNO RETCODE.

Figure 46. READ call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing READ. The field is left-aligned and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket that is going to read the data.

NBYTE
A fullword binary number set to the size of BUF. READ does not return more than the number of bytes
of data in NBYTE even if more data is available.

Parameter values returned to the application
BUF

On input, a buffer to be filled by completion of the call. The length of BUF must be at least as long as
the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.

READV
The READV function reads data on a socket and stores it in a set of buffers. If a datagram packet is too
long to fit in the supplied buffers, datagram sockets discard extra bytes.

Table 32. READV call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

134 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 32. READV call requirements (continued)

Condition Requirement

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 47 on page 135 shows an example of READV call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE 'READV'.
 01 S PIC 9(4) BINARY.
 01 IOVCNT PIC 9(8) BINARY.

 01 IOV.
 03 BUFFER-ENTRY OCCURS N TIMES.
 05 BUFFER-POINTER USAGE IS POINTER.
 05 RESERVED PIC X(4).
 05 BUFFER_LENGTH PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 SET BUFFER-POINTER(1) TO ADDRESS OF BUFFER1.
 SET BUFFER-LENGTH(1) TO LENGTH OF BUFFER1.
 SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.
 SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.
 " " " " "
 " " " " "
 SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.
 SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.
 Call 'EZASOCKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 47. READV call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing READV. The field is left-aligned and padded to the right with
blanks.

S
A value or the address of a halfword binary number specifying the descriptor of the socket into which
the data is to be read.

IOV
An array of tripleword structures with the number of structures equal to the value in IOVCNT and the
format of the structures as follows:

Chapter 7. CALL instruction application programming interface 135

Fullword 1
Pointer to the address of a data buffer, which is filled in on completion of the call

Fullword 2
Reserved

Fullword 3
The length of the data buffer referenced in fullword one

IOVCNT
A fullword binary field specifying the number of data buffers provided for this call.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.

RECV
The RECV call, like READ, receives data on a socket with descriptor S. RECV applies only to connected
sockets. If a datagram packet is too long to fit in the supplied buffers, datagram sockets discard extra
bytes.

For additional control of the incoming data, RECV can:

• Peek at the incoming message without having it removed from the buffer
• Read out-of-band data

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket and program A sends 1000 bytes,
each call to this function can return any number of bytes, up to the entire 1000 bytes. The number of
bytes returned will be contained in RETCODE. Therefore, programs using stream sockets should place
RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV blocks the caller until data
arrives. If data is not available and the socket is in nonblocking mode, RECV returns a -1 and sets ERRNO
to 35 (EWOULDBLOCK). See “FCNTL” on page 66 or “IOCTL” on page 118 for a description of how to set
nonblocking mode.

For raw sockets, RECV adds a 20-byte header.

Note: See “EZACIC05 ” on page 189 for a subroutine that will translate ASCII input data to EBCDIC.

Table 33. RECV call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

136 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 33. RECV call requirements (continued)

Condition Requirement

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 48 on page 137 shows an example of RECV call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'RECV'.
 01 S PIC 9(4) BINARY.
 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 PEEK VALUE IS 2.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE BUF
 ERRNO RETCODE.

Figure 48. RECV call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing RECV. The field is left-aligned and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket to receive the data.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG X'00000000' Read data.

MSG-OOB X'00000001' Receive out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band data
can be read if the SO-OOBINLINE option is set for
the socket.

Chapter 7. CALL instruction application programming interface 137

Literal Value Binary Value Description

MSG-PEEK X'00000002' Peek at the data, but do not destroy data. If the
peek flag is set, the next receive operation reads
the same data.

MSG-WAITALL X'00000040' Requests that the function block until the full
amount of data that was requested can be
returned (stream sockets only). The function
might return a smaller amount of data if the
connection is closed, if an error is pending, or if
the SO_RCVTIMEO field is set and the timer has
expired for the socket.

NBYTE
A value or the address of a fullword binary number set to the size of BUF. RECV does not receive more
than the number of bytes of data in NBYTE even if more data is available.

Parameter values returned to the application
BUF

The input buffer to receive the data.
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

The socket is closed.
>0

A positive return code indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.

RECVFROM
The RECVFROM call receives data on a socket with descriptor S and stores it in a buffer. The RECVFROM
call applies to both connected and unconnected sockets. The socket address is returned in the NAME
structure. If a datagram packet is too long to fit in the supplied buffers, datagram sockets discard extra
bytes.

For datagram protocols, RECVFROM returns the source address associated with each incoming datagram.
For connection-oriented protocols like TCP, GETPEERNAME returns the address associated with the other
end of the connection.

If NAME is nonzero, the call returns the address of the sender. The NBYTE parameter should be set to the
size of the buffer.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket and program A sends 1000 bytes,
each call to this function can return any number of bytes, up to the entire 1000 bytes. The number of
bytes returned will be contained in RETCODE. Therefore, programs using stream sockets should place
RECVFROM in a loop that repeats until all data has been received.

138 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

For raw sockets, RECVFROM adds a 20-byte header.

If data is not available for the socket, and the socket is in blocking mode, RECVFROM blocks the caller
until data arrives. If data is not available and the socket is in nonblocking mode, RECVFROM returns
a -1 and sets ERRNO to 35 (EWOULDBLOCK). See “FCNTL” on page 66 or “IOCTL” on page 118 for a
description of how to set nonblocking mode.

Note: See “EZACIC05 ” on page 189 for a subroutine that will translate ASCII input data to EBCDIC.

Table 34. RECVFROM call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 49 on page 139 shows an example of RECVFROM call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVFROM'.
 01 S PIC 9(4) BINARY.
 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 PEEK VALUE IS 2.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).

 * IPv4 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME.
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS
 NBYTE BUF NAME ERRNO RETCODE.

Figure 49. RECVFROM call instruction example

Chapter 7. CALL instruction application programming interface 139

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing RECVFROM. The field is left-aligned and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket to receive the data.

FLAGS
A fullword binary field containing flag values as follows:

Literal Value Binary Value Description

NO-FLAG X'00000000' Read data.

MSG-OOB X'00000001' Receive out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band data
can be read if the SO-OOBINLINE option is set for
the socket.

MSG-PEEK X'00000002' Peek at the data, but do not destroy data. If the
peek flag is set, the next receive operation reads
the same data.

MSG-WAITALL X'00000040' Requests that the function block until the
requested amount of data can be returned
(stream sockets only). The function might return
a smaller amount of data if the connection
is closed, if an error is pending, or if the
SO_RCVTIMEO field is set and the timer has
expired for the socket.

NBYTE
A fullword binary number specifying the length of the input buffer.

Parameter values returned to the application
BUF

Defines an input buffer to receive the input data.
NAME

An IPv4 socket address structure containing the address of the socket that sent the data. The
structure is as follows:
FAMILY

A halfword binary number specifying the IPv4 addressing family. The value is always decimal 2,
indicating AF_INET.

PORT
A halfword binary number specifying the port number of the sending socket.

IP-ADDRESS
A fullword binary number specifying the 32-bit IPv4 IP address of the sending socket.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

140 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

An IPv6 socket address structure containing the address of the socket that sent the data. The
structure is as follows:
Field

Description
FAMILY

A halfword binary number specifying the IPv6 addressing family. The value is decimal 19,
indicating AF_INET6.

PORT
A halfword binary number specifying the port number of the sending socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 IP address of the sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID contains
the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

The socket is closed.
>0

A positive return code indicates the number of bytes of data transferred by the read call.
-1

Check ERRNO for an error code.

RECVMSG
The RECVMSG call receives messages on a socket with descriptor S and stores them in an array of
message headers. If a datagram packet is too long to fit in the supplied buffers, datagram sockets discard
extra bytes.

For datagram protocols, RECVMSG returns the source address associated with each incoming datagram.
For connection-oriented protocols like TCP, GETPEERNAME returns the address associated with the other
end of the connection.

Table 35. RECVMSG call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 7. CALL instruction application programming interface 141

Table 35. RECVMSG call requirements (continued)

Condition Requirement

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

RECVMSG call instruction example

WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVMSG'.
 01 S PIC 9(4) BINARY.
 01 MSG-HDR.
 03 MSG-NAME USAGE IS POINTER.
 03 MSG-NAME-LEN PIC 9(8) COMP.
 03 IOV USAGE IS POINTER.
 03 IOVCNT USAGE IS POINTER.
 03 MSG-ACCRIGHTS USAGE IS POINTER.
 03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 PEEK VALUE IS 2.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 LINKAGE SECTION.
 01 L1.
 03 RECVMSG-IOVECTOR.
 05 IOV1A USAGE IS POINTER.
 05 IOV1AL PIC 9(8) COMP.
 05 IOV1L PIC 9(8) COMP.
 05 IOV2A USAGE IS POINTER.
 05 IOV2AL PIC 9(8) COMP.
 05 IOV2L PIC 9(8) COMP.
 05 IOV3A USAGE IS POINTER.
 05 IOV3AL PIC 9(8) COMP.
 05 IOV3L PIC 9(8) COMP.

 03 RECVMSG-BUFFER1 PIC X(16).
 03 RECVMSG-BUFFER2 PIC X(16).
 03 RECVMSG-BUFFER3 PIC X(16).
 03 RECVMSG-BUFNO PIC 9(8) COMP.

 * IPv4 socket address structure.
 03 NAME.
 05 FAMILY PIC 9(4) BINARY.
 05 PORT PIC 9(4) BINARY.
 05 IP-ADDRESS PIC 9(8) BINARY.
 05 RESERVED PIC X(8).

 * IPv6 socket address structure.
 03 NAME.
 05 FAMILY PIC 9(4) BINARY.
 05 PORT PIC 9(4) BINARY.
 53 FLOWINFO PIC 9(8) BINARY.
 05 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 05 SCOPE-ID PIC 9(8) BINARY.

142 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 PROCEDURE DIVISION USING L1.

 SET MSG-NAME TO ADDRESS OF NAME.
 MOVE LENGTH OF NAME TO MSG-NAME-LEN.
 SET IOV TO ADDRESS OF RECVMSG-IOVECTOR.
 MOVE 3 TO RECVMSG-BUFNO.
 SET IOVCNT TO ADDRESS OF RECVMSG-BUFNO.
 SET IOV1A TO ADDRESS OF RECVMSG-BUFFER1.
 MOVE 0 TO IOV1AL.
 MOVE LENGTH OF RECVMSG-BUFFER1 TO IOV1L.
 SET IOV2A TO ADDRESS OF RECVMSG-BUFFER2.
 MOVE 0 TO IOV2AL.
 MOVE LENGTH OF RECVMSG-BUFFER2 TO IOV2L.
 SET IOV3A TO ADDRESS OF RECVMSG-BUFFER3.
 MOVE 0 TO IOV3AL.
 MOVE LENGTH OF RECVMSG-BUFFER3 TO IOV3L.
 SET MSG-ACCRIGHTS TO NULLS.
 SET MSG-ACCRIGHTS-LEN TO NULLS.
 MOVE 0 TO FLAGS.
 MOVE SPACES TO RECVMSG-BUFFER1.
 MOVE SPACES TO RECVMSG-BUFFER2.
 MOVE SPACES TO RECVMSG-BUFFER3.

 CALL 'EZASOKET' USING SOC-FUNCTION S MSG-HDR FLAGS ERRNO RETCODE.

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
S

A value or the address of a halfword binary number specifying the socket descriptor.
MSG

On input, a pointer to a message header into which the message is received upon completion of the
call.
Field

Description
NAME

On input, a pointer to a buffer where the sender address is stored upon completion of the call.
The storage being pointed to should be for an IPv4 socket address or an IPv6 socket address. The
IPv4 socket address structure contains the following fields:
Field

Description
FAMILY

Output parameter. A halfword binary number specifying the IPv4 addressing family. The value
for IPv4 socket descriptor (S parameter) is decimal 2, indicating AF_INET.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

IP-ADDRESS
Output parameter. A fullword binary number specifying the 32-bit IPv4 IP address of the
sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure contains the following fields:
Field

Description

Chapter 7. CALL instruction application programming interface 143

FAMILY
Output parameter. A halfword binary number specifying the IPv6 addressing family. The value
for IPv6 socket descriptor (S parameter) is decimal 19, indicating AF_INET6.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This value of this field is
undefined.

IP–ADDRESS
Output parameter. A 16 byte binary field specifying the 128–bit IPv6 IP address, in network
byte order, of the sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of
the address carried in the IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other address scopes, SCOPE-ID is
undefined.

NAME-LEN
On input, a pointer to the size of the NAME.

IOV
On input, a pointer to an array of tripleword structures with the number of structures equal to the
value in IOVCNT and the format of the structures as follows:
Fullword 1

A pointer to the address of a data buffer. This data buffer must be in the home address space.
Fullword 2

Reserved. This storage will be cleared.
Fullword 3

A pointer to the length of the data buffer referenced in fullword 1.

In COBOL, the IOV structure must be defined separately in the Linkage section, as shown in the
example.

IOVCNT
On input, a pointer to a fullword binary field specifying the number of data buffers provided for this
call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is ignored.

ACCRLEN
On input, a pointer to the length of the access rights received. This field is ignored.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG X'00000000' Read data.

MSG-OOB X'00000001' Receive out-of-band data (stream sockets only).
Even if the OOB flag is not set, out-of-band data
can be read if the SO-OOBINLINE option is set for
the socket.

MSG-PEEK X'00000002' Peek at the data, but do not destroy data. If the
peek flag is set, the next receive operation reads
the same data.

144 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Literal Value Binary Value Description

MSG-WAITALL X'00000040' Requests that the function block until the
requested amount of data can be returned
(stream sockets only). The function might return
a smaller amount of data if the connection
is closed, if an error is pending, or if the
SO_RCVTIMEO field is set and the timer has
expired for the socket.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field with the following values:
Value

Description
<0

Call returned error. See ERRNO field.
0

Connection partner has closed connection.
>0

Number of bytes read.

SELECT
In a process where multiple I/O operations can occur it is necessary for the program to be able to wait
on one or several of the operations to complete.For example, consider a program that issues a READ to
multiple sockets whose blocking mode is set. Because the socket would block on a READ call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this problem, but would
require polling each socket repeatedly until data became available. The SELECT call allows you to test
several sockets and to execute a subsequent I/O call only when one of the tested sockets is ready,
thereby ensuring that the I/O call will not block.

To use the SELECT call as a timer in your program, do one of the following actions:

• Set the read, write, and exception arrays to zeros.
• Specify MAXSOC <= 0.

Table 36. SELECT call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Chapter 7. CALL instruction application programming interface 145

Table 36. SELECT call requirements (continued)

Condition Requirement

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Defining which sockets to test
The SELECT call monitors for read operations, write operations, and exception operations:

• When a socket is ready to read, one of the following conditions has occurred:

– A buffer for the specified sockets contains input data. If input data is available for a given socket, a
read operation on that socket will not block.

– A connection has been requested on that socket.
• When a socket is ready to write, TCP/IP can accommodate additional output data. If TCP/IP can accept

additional output for a given socket, a write operation on that socket will not block.
• When an exception condition has occurred on a specified socket it is an indication that a TAKESOCKET

has occurred for that socket.
• A timeout occurs on the SELECT call. The timeout period can be specified when the SELECT call is

issued.

Each socket descriptor is represented by a bit in a bit string. The length of this bit-mask array is
dependent on the value of the MAXSOC parameter and must be a multiple of 4 bytes.

For information about selecting requests in a concurrent server program, see z/OS Communications
Server: IP Sockets Application Programming Interface Guide and Reference.

Note: To simplify string processing in COBOL, you can use the program EZACIC06 to convert each bit in
the string to a character. For more information, see “EZACIC06 ” on page 190.

Read operations
Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or RECVMSG calls. A socket is ready
to be read when data has been received for it or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits in RSNDMSK to one
before issuing the SELECT call. When the SELECT call returns, the corresponding bits in the RRETMSK
indicate sockets are ready for reading.

Write operations
A socket is selected for writing (ready to be written) when:

• TCP/IP can accept additional outgoing data.
• The socket is marked nonblocking and a previous CONNECT did not complete immediately. In this case,

CONNECT returned an ERRNO with a value of 36 (EINPROGRESS). This socket will be selected for write
when the CONNECT completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent exceeds the amount of
data TCP/IP can accept. To avoid this, you can precede the write operation with a SELECT call to ensure
that the socket is ready for writing. Once a socket is selected for WRITE, the program can determine the
amount of TCP/IP buffer space available by issuing the GETSOCKOPT call with the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits representing those
sockets to 1 before issuing the SELECT call. When the SELECT call returns, the corresponding bits in the
WRETMSK indicate sockets are ready for writing.

146 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Exception operations
For each socket to be tested, the SELECT call can check for an existing exception condition. Two exception
conditions are supported:

• The calling program (concurrent server) has issued a GIVESOCKET command and the target child server
has successfully issued the TAKESOCKET call. When this condition is selected, the calling program
(concurrent server) should issue CLOSE to dissociate itself from the socket.

• A socket has received out-of-band data. On this condition, a READ will return the out-of-band data
ahead of program data.

To test whether any of several sockets have an exception condition, set the ESNDMSK bits representing
those sockets to 1. When the SELECT call returns, the corresponding bits in the ERETMSK indicate
sockets with exception conditions.

MAXSOC parameter
The SELECT call must test each bit in each string before returning results. For efficiency, the MAXSOC
parameter can be used to specify the largest socket descriptor number that needs to be tested for any
event type. The SELECT call tests only bits that are in the range 0 through the MAXSOC value minus 1.

Example: If MAXSOC is set to 50, the range is 0 - 49.

TIMEOUT parameter
If the time specified in the TIMEOUT parameter elapses before any event is detected, the SELECT call
returns, and the RETCODE is set to 0.

Figure 50 on page 147 shows an example of SELECT call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.
 01 MAXSOC PIC 9(8) BINARY.
 01 TIMEOUT.
 03 TIMEOUT-SECONDS PIC 9(8) BINARY.
 03 TIMEOUT-MICROSEC PIC 9(8) BINARY.
 01 RSNDMSK PIC X(*).
 01 WSNDMSK PIC X(*).
 01 ESNDMSK PIC X(*).
 01 RRETMSK PIC X(*).
 01 WRETMSK PIC X(*).
 01 ERETMSK PIC X(*).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
 RSNDMSK WSNDMSK ESNDMSK
 RRETMSK WRETMSK ERETMSK
 ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Figure 50. SELECT call instruction example

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into one 32-bit mask [PIC
X(4)]. If you have 33 sockets, you must allocate two 32-bit masks [PIC X(8)].

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Chapter 7. CALL instruction application programming interface 147

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left-aligned and padded on the right with
blanks.

MAXSOC
A fullword binary field that specifies the largest socket descriptor value that is being checked. The
SELECT call tests only bits that are in the range 0 through the MAXSOC value minus 1. For example, if
you set the MAXSOC value to 50, the range is 0 – 49.

TIMEOUT
If TIMEOUT is a positive value, it specifies the maximum interval to wait for the selection to complete.
If TIMEOUT-SECONDS is a negative value, the SELECT call blocks until a socket becomes ready. To
poll the sockets and return immediately, specify the TIMEOUT value to be 0.

TIMEOUT is specified in the two-word TIMEOUT as follows:

• TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds component of the timeout
value.

• TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the microseconds component of the
timeout value (0—999999).

For example, if you want SELECT to time out after 3.5 seconds, set TIMEOUT-SECONDS to 3 and
TIMEOUT-MICROSEC to 500000.

RSNDMSK
A bit string sent to request read event status.

• For each socket to be checked for pending read events, the corresponding bit in the string should be
set to 1.

• For sockets to be ignored, the value of the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for read events.

WSNDMSK
A bit string sent to request write event status.

• For each socket to be checked for pending write events, the corresponding bit in the string should
be set to 1.

• For sockets to be ignored, the value of the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for write events.

ESNDMSK
A bit string sent to request exception event status.

• For each socket to be checked for pending exception events, the corresponding bit in the string
should be set to 1.

• For each socket to be ignored, the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for exception events.

Parameter values returned to the application
RRETMSK

A bit string returned with the status of read events. The length of the string should be equal to the
maximum number of sockets to be checked. For each socket that is ready to read, the corresponding
bit in the string will be set to 1; bits that represent sockets that are not ready to read will be set to 0.

WRETMSK
A bit string returned with the status of write events. The length of the string should be equal to the
maximum number of sockets to be checked. For each socket that is ready to write, the corresponding

148 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

bit in the string will be set to 1; bits that represent sockets that are not ready to be written will be set
to 0.

ERETMSK
A bit string returned with the status of exception events. The length of the string should be equal to
the maximum number of sockets to be checked. For each socket that has an exception status, the
corresponding bit will be set to 1; bits that represent sockets that do not have exception status will be
set to 0.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
>0

Indicates the sum of all ready sockets in the three masks.
 0

Indicates that the SELECT time limit has expired.
-1

Check ERRNO for an error code.

SELECTEX
The SELECTEX call monitors a set of sockets, a time value, and an ECB. It completes when either one of
the sockets has activity, the time value expires, or one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following tasks:

• Set the read, write, and exception arrays to zeros.
• Specify MAXSOC ≤ 0.

Table 37. SELECTEX call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 51 on page 150 shows an example of SELECTEX call instructions.

Chapter 7. CALL instruction application programming interface 149

If an application intends to pass a single ECB on the SELECTEX call, then the corresponding working
storage definitions and CALL instruction should be coded as shown in the following example:

WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECTEX'.
 01 MAXSOC PIC 9(8) BINARY.
 01 TIMEOUT.
 03 TIMEOUT-SECONDS PIC 9(8) BINARY.
 03 TIMEOUT-MINUTES PIC 9(8) BINARY.
 01 RSNDMSK PIC X(*).
 01 WSNDMSK PIC X(*).
 01 ESNDMSK PIC X(*).
 01 RRETMSK PIC X(*).
 01 WRETMSK PIC X(*).
 01 ERETMSK PIC X(*).
 01 SELECB PIC X(4).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

Where * is the size of the select mask

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
 RSNDMSK WSNDMSK ESNDMSK
 RRETMSK WRETMSK ERETMSK
 SELECB ERRNO RETCODE.

However, if the application intends to pass the address of an ECB list on the SELECTEX call, then the
application must set the high order bit in the ECB list address and pass that address using the BY VALUE
option as documented in the following example. The remaining parameters must be set back to the
default by specifying BY REFERENCE before ERRNO:

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECTEX'.
 01 MAXSOC PIC 9(8) BINARY.
 01 TIMEOUT.
 03 TIMEOUT-SECONDS PIC 9(8) BINARY.
 03 TIMEOUT-MINUTES PIC 9(8) BINARY.
 01 RSNDMSK PIC X(*).
 01 WSNDMSK PIC X(*).
 01 ESNDMSK PIC X(*).
 01 RRETMSK PIC X(*).
 01 WRETMSK PIC X(*).
 01 ERETMSK PIC X(*).
 01 ECBLIST-PTR USAGE IS POINTER.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 Where * is the size of the select mask

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
 RSNDMSK WSNDMSK ESNDMSK
 RRETMSK WRETMSK ERETMSK
 BY VALUE ECBLIST-PTR
 BY REFERENCE ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Figure 51. SELECTEX call instruction example

Defining which sockets to test
The SELECTEX call monitors for read operations, write operations, and exception operations:

• When a socket is ready to read, one of the following conditions has occurred:

– A buffer for the specified sockets contains input data. If input data is available for a given socket, a
read operation on that socket will not block.

150 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

– A connection has been requested on that socket.
• When a socket is ready to write, TCP/IP can accommodate additional output data. If TCP/IP can accept

additional output for a given socket, a write operation on that socket will not block.
• When an exception condition has occurred on a specified socket it is an indication that a TAKESOCKET

has occurred for that socket.
• A timeout occurs on the SELECTEX call. The timeout period can be specified when the SELECTEX call is

issued.
• The ECB (or one of the ECBs in the ECB list) passed on the SELECTEX call has been posted.

Each socket descriptor is represented by a bit in a bit string. The length of this bit-mask array is
dependent on the value of the MAXSOC parameter and must be a multiple of 4 bytes.

For information about selecting requests in a concurrent server program, see z/OS Communications
Server: IP Sockets Application Programming Interface Guide and Reference.

Note: To simplify string processing in COBOL, you can use the program EZACIC06 to convert each bit in
the string to a character. For more information, see “EZACIC06 ” on page 190.

Read operations
Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or RECVMSG calls. A socket is ready
to be read when data has been received for it or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits in RSNDMSK to
one before issuing the SELECTEX call. When the SELECTEX call returns, the corresponding bits in the
RRETMSK indicate sockets are ready for reading.

Write operations
A socket is selected for writing (ready to be written) when:

• TCP/IP can accept additional outgoing data.
• The socket is marked nonblocking and a previous CONNECT did not complete immediately. In this case,

CONNECT returned an ERRNO with a value of 36 (EINPROGRESS). This socket will be selected for write
when the CONNECT completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent exceeds the amount of
data TCP/IP can accept. To avoid this, you can precede the write operation with a SELECTEX call to ensure
that the socket is ready for writing. Once a socket is selected for WRITE, the program can determine the
amount of TCP/IP buffer space available by issuing the GETSOCKOPT call with the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits representing those
sockets to 1 before issuing the SELECTEX call. When the SELECTEX call returns, the corresponding bits in
the WRETMSK indicate sockets are ready for writing.

Exception operations
For each socket to be tested, the SELECTEX call can check for an existing exception condition. Two
exception conditions are supported:

• The calling program (concurrent server) has issued a GIVESOCKET command and the target child server
has successfully issued the TAKESOCKET call. When this condition is selected, the calling program
(concurrent server) should issue CLOSE to dissociate itself from the socket.

• A socket has received out-of-band data. On this condition, a READ will return the out-of-band data
ahead of program data.

To test whether any of several sockets have an exception condition, set the ESNDMSK bits representing
those sockets to 1. When the SELECTEX call returns, the corresponding bits in the ERETMSK indicate
sockets with exception conditions.

Chapter 7. CALL instruction application programming interface 151

MAXSOC parameter
The SELECTEX call must test each bit in each string before returning results. For efficiency, the MAXSOC
parameter can be used to specify the largest socket descriptor number that needs to be tested for any
event type. The SELECTEX call tests only bits that are in the range 0 through the MAXSOC value minus 1.

Example: If MAXSOC is set to 50, the range is 0 - 49.

TIMEOUT parameter
If the time specified in the TIMEOUT parameter elapses before any event is detected, the SELECTEX call
returns, and the RETCODE is set to 0.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left-aligned and padded on the right with
blanks.

MAXSOC
A fullword binary field that specifies the largest socket descriptor value that is being checked. The
SELECTEX call tests only bits that are in the range 0 through the MAXSOC value minus 1. For example,
if you set the MAXSOC value to 50, the range is 0 – 49.

TIMEOUT
If TIMEOUT is a positive value, it specifies a maximum interval to wait for the selection to complete. If
TIMEOUT-SECONDS is a negative value, the SELECTEX call blocks until a socket becomes ready or an
ECB or ECB in a list is posted. To poll the sockets and return immediately, set TIMEOUT to be zeros.

TIMEOUT is specified in the two-word TIMEOUT as follows:

• TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds component of the timeout
value.

• TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the microseconds component of the
timeout value (0—999999).

For example, if you want SELECTEX to time out after 3.5 seconds, set TIMEOUT-SECONDS to 3 and
TIMEOUT-MICROSEC to 500000.

RSNDMSK
The bit-mask array to control checking for read interrupts. If this parameter is not specified or the
specified bit-mask is zeros, the SELECT will not check for read interrupts. The length of this bit-mask
array is dependent on the value in MAXSOC.

WSNDMSK
The bit-mask array to control checking for write interrupts. If this parameter is not specified or the
specified bit-mask is zeros, the SELECT will not check for write interrupts. The length of this bit-mask
array is dependent on the value in MAXSOC.

ESNDMSK
The bit-mask array to control checking for exception interrupts. If this parameter is not specified or
the specified bit-mask is zeros, the SELECT will not check for exception interrupts. The length of this
bit-mask array is dependent on the value in MAXSOC.

SELECB
An ECB which, if posted, causes completion of the SELECTEX.

ECBLIST-PTR
A pointer to an ECB list. The application must set the high order bit in the ECB list address and pass
that address using the BY VALUE option. The remaining parameters must be set back to the default by
specifying BY REFERENCE before ERRNO.

152 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Parameter values returned to the application
ERRNO

A fullword binary field; if RETCODE is negative, this contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field
Value

Meaning
>0

The number of ready sockets.
0

Either the SELECTEX time limit has expired (ECB value is 0) or one of the caller's ECBs has been
posted (ECB value is nonzero and the caller's descriptor sets is set to 0). The caller must initialize
the ECB values to 0 before issuing the SELECTEX socket command.

-1
Check ERRNO for an error code.

RRETMSK
The bit-mask array returned by the SELECT if RSNDMSK is specified. The length of this bit-mask array
is dependent on the value in MAXSOC.

WRETMSK
The bit-mask array returned by the SELECT if WSNDMSK is specified. The length of this bit-mask array
is dependent on the value in MAXSOC.

ERETMSK
The bit-mask array returned by the SELECT if ESNDMSK is specified. The length of this bit-mask array
is dependent on the value in MAXSOC.

SEND
The SEND call sends data on a specified connected socket.

The FLAGS field allows you to:

• Send out-of-band data, such as interrupts, aborts, and data marked urgent. Only stream sockets
created in the AF_INET address family support out-of-band data.

• Suppress use of local routing tables. This implies that the caller takes control of routing and writing
network software.

For datagram sockets, SEND transmits the entire datagram if it fits into the receiving buffer. Extra data is
discarded.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each call to this function can send any number
of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in RETCODE. Therefore,
programs using stream sockets should place this call in a loop, reissuing the call until all data has been
sent.

Note: See “EZACIC04 ” on page 188 for a subroutine that will translate EBCDIC input data to ASCII.

Table 38. SEND call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 7. CALL instruction application programming interface 153

Table 38. SEND call requirements (continued)

Condition Requirement

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 52 on page 154 shows an example of SEND call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SEND'.
 01 S PIC 9(4) BINARY.
 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 DONT-ROUTE VALUE IS 4.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE
 BUF ERRNO RETCODE.

Figure 52. SEND call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SEND. The field is left-aligned and padded on the right with
blanks.

S
A halfword binary number specifying the socket descriptor of the socket that is sending data.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG X'00000000' No flag is set. The command behaves like a
WRITE call.

MSG-OOB X'00000001' Send out-of-band data. (Stream sockets only.)
Even if the OOB flag is not set, out-of-band data
can be read if the SO-OOBINLINE option is set for
the socket.

MSG-DONTROUTE X'00000004' Do not route. Routing is provided by the calling
program.

154 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

NBYTE
A fullword binary number set to the number of bytes of data to be transferred.

BUF
The buffer containing the data to be transmitted. BUF should be the size specified in NBYTE.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNObe for an error code.

SENDMSG
The SENDMSG call sends messages on a socket with descriptor S passed in an array of messages.

Table 39. SENDMSG call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

“SENDMSG call instruction example (part 1 of 2)” on page 155 and “SENDMSG call instruction example
(part 2 of 2)” on page 157 show an example of SENDMSG call instructions.

SENDMSG call instruction example (part 1 of 2)

WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDMSG'.
 01 S PIC 9(4) BINARY.
 01 MSG-HDR.
 03 MSG-NAME USAGE IS POINTER.
 03 MSG-NAME-LEN PIC 9(8) BINARY.
 03 IOV USAGE IS POINTER.
 03 IOVCNT USAGE IS POINTER.
 03 MSG-ACCRIGHTS USAGE IS POINTER.

Chapter 7. CALL instruction application programming interface 155

 03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

 01 FLAGS PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 DONTROUTE VALUE IS 4.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 01 SENDMSG-IPV4ADDR PIC 9(8) BINARY.
 01 SENDMSG-IPV6ADDR.
 05 FILLER PIC9(16) BINARY.
 05 FILLER PIC9(16) BINARY.

 LINKAGE SECTION.
 01 L1.
 03 SENDMSG-IOVECTOR.
 05 IOV1A USAGE IS POINTER.
 05 IOV1AL PIC 9(8) COMP.
 05 IOV1L PIC 9(8) COMP.
 05 IOV2A USAGE IS POINTER.
 05 IOV2AL PIC 9(8) COMP.
 05 IOV2L PIC 9(8) COMP.
 05 IOV3A USAGE IS POINTER.
 05 IOV3AL PIC 9(8) COMP.
 05 IOV3L PIC 9(8) COMP.

 03 SENDMSG-BUFFER1 PIC X(16).
 03 SENDMSG-BUFFER2 PIC X(16).
 03 SENDMSG-BUFFER3 PIC X(16).
 03 SENDMSG-BUFNO PIC 9(8) COMP.

 * IPv4 socket address structure.

 03 NAME.
 05 FAMILY PIC 9(4) BINARY.
 05 PORT PIC 9(4) BINARY.
 05 IP-ADDRESS PIC 9(8) BINARY.
 05 RESERVED PIC X(8) BINARY.

 * IPv6 socket address structure.

 03 NAME.
 05 FAMILY PIC 9(4) BINARY.
 05 PORT PIC 9(4) BINARY.
 05 FLOWINFO PIC 9(8) BINARY.
 05 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 05 SCOPE-ID PIC 9(8) BINARY.

 PROCEDURE DIVISION USING L1.

 * For IPv6.
 MOVE 19 TO FAMILY.
 MOVE 1234 TO PORT.
 MOVE 0 TO FLOWINFO.
 MOVE SENDMSG-IPV6ADDR TO IP-ADDRESS.
 MOVE 0 TO SCOPE-ID.
 * For IPv4.
 MOVE 2 TO FAMILY.
 MOVE 1234 TO PORT.
 MOVE SENDMSG-IPV4ADDR TO IP-ADDRESS.

 SET MSG-NAME TO ADDRESS OF NAME.
 MOVE LENGTH OF NAME TO MSG-NAME-LEN.
 SET IOV TO ADDRESS OF SENDMSG-IOVECTOR.
 MOVE 3 TO SENDMSG-BUFNO.

156 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

SENDMSG call instruction example (part 2 of 2)

 SET MSG-IOVCNT TO ADDRESS OF SENDMSG-BUFNO.
 SET IOV1A TO ADDRESS OF SENDMSG-BUFFER1.
 MOVE 0 TO IOV1AL.

 MOVE LENGTH OF SENDMSG-BUFFER1 TO IOV1L.
 SET IOV2A TO ADDRESS OF SENDMSG-BUFFER2.
 MOVE 0 TO IOV2AL.
 MOVE LENGTH OF SENDMSG-BUFFER2 TO IOV2L.
 SET IOV3A TO ADDRESS OF SENDMSG-BUFFER3.
 MOVE 0 TO IOV3AL.
 MOVE LENGTH OF SENDMSG-BUFFER3 TO IOV3L.
 SET MSG-ACCRIGHTS TO NULLS.
 SET MSG-ACCRIGHTS-LEN TO NULLS.
 MOVE 0 TO FLAGS.
 MOVE 'MESSAGE TEXT 1 ' TO SENDMSG-BUFFER1.
 MOVE 'MESSAGE TEXT 2 ' TO SENDMSG-BUFFER2.
 MOVE 'MESSAGE TEXT 3 ' TO SENDMSG-BUFFER3.

 CALL 'EZASOKET' USING SOC-FUNCTION S MSG-HDR FLAGS ERRNO RETCODE.

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SENDMSG. The field is left-aligned and padded on the right with
blanks.

S
A value or the address of a halfword binary number specifying the socket descriptor.

MSG
A pointer to an array of message headers from which messages are sent.
Field

Description
NAME

On input, a pointer to a buffer where the sender's address is stored upon completion of the call.
The storage being pointed to should be for an IPv4 socket address or an IPv6 socket address. The
IPv4 socket address structure contains the following fields:
Field

Description
FAMILY

Output parameter. A halfword binary number specifying the IPv4 addressing family. The value
for IPv4 socket descriptor (S parameter) is decimal 2, indicating AF_INET.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

IP-ADDRESS
Output parameter. A fullword binary number specifying the 32-bit IPv4 IP address of the
sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure contains the following fields:
Field

Description

Chapter 7. CALL instruction application programming interface 157

FAMILY
Output parameter. A halfword binary number specifying the IPv6 addressing family. The value
for IPv6 socket descriptor (S parameter) is decimal 19, indicating AF_INET6.

PORT
Output parameter. A halfword binary number specifying the port number of the sending
socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IP-ADDRESS
Output parameter. A 16-byte binary field set to the 128-bit IPv6 IP address of the sending
socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does
not identify the set of interfaces to be used, and can be specified for any address types and
scopes. For a link scope IPv6-ADDRESS, SCOPE-ID can specify a link index which identifies a
set of interfaces. For all other address scopes, SCOPE-ID must be set to 0.

NAME-LEN
On input, a pointer to the size of the address buffer.

IOV
On input, a pointer to an array of three fullword structures with the number of structures equal to
the value in IOVCNT and the format of the structures as follows:
Fullword 1

A pointer to the address of a data buffer.
Fullword 2

Reserved.
Fullword 3

A pointer to the length of the data buffer referenced in Fullword 1.

In COBOL, the IOV structure must be defined separately in the Linkage section, as shown in the
example.

IOVCNT
On input, a pointer to a fullword binary field specifying the number of data buffers provided for this
call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is ignored.

ACCRIGHTS-LEN
On input, a pointer to the length of the access rights received. This field is ignored.

FLAGS
A fullword field containing the following information:

Literal Value Binary Value Description

NO-FLAG X'00000000' No flag is set. The command behaves like a
WRITE call.

MSG-OOB X'00000001' Send out-of-band data. (Stream sockets only.)

MSG-DONTROUTE X'00000004' Do not route. Routing is provided by the calling
program.

158 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNO for an error code.

SENDTO
SENDTO is similar to SEND, except that it includes the destination address parameter. The destination
address allows you to use the SENDTO call to send datagrams on a UDP socket, regardless of whether the
socket is connected.

The FLAGS parameter allows you to:

• Send out-of-band data, such as interrupts, aborts, and data marked as urgent.
• Suppress use of local routing tables. This implies that the caller takes control of routing, which requires

writing network software.

For datagram sockets, SENDTO transmits the entire datagram if it fits into the receiving buffer. Extra data
is discarded.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each call to this function can send any number
of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in RETCODE. Therefore,
programs using stream sockets should place SENDTO in a loop that repeats the call until all data has been
sent.

Note: See “EZACIC04 ” on page 188 for a subroutine that will translate EBCDIC input data to ASCII.

Table 40. SENDTO call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 53 on page 160 shows an example of SENDTO call instructions.

Chapter 7. CALL instruction application programming interface 159

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDTO'.
 01 S PIC 9(4) BINARY.
 01 FLAGS. PIC 9(8) BINARY.
 88 NO-FLAG VALUE IS 0.
 88 OOB VALUE IS 1.
 88 DONT-ROUTE VALUE IS 4.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).

 * IPv4 socket address structure.
 01 NAME
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 IP-ADDRESS PIC 9(8) BINARY.
 03 RESERVED PIC X(8).

 * IPv6 socket address structure.
 01 NAME
 03 FAMILY PIC 9(4) BINARY.
 03 PORT PIC 9(4) BINARY.
 03 FLOWINFO PIC 9(8) BINARY.
 03 IP-ADDRESS.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE
 BUF NAME ERRNO RETCODE.

Figure 53. SENDTO call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SENDTO. The field is left-aligned and padded on the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket sending the data.

FLAGS
A fullword field that returns one of the following information:

Literal Value Binary Value Description

NO-FLAG X'00000000' No flag is set. The command behaves like a
WRITE call.

MSG-OOB X'00000001' Send out-of-band data. (Stream sockets only.)

MSG-DONTROUTE X'00000004' Do not route. Routing is provided by the calling
program.

NBYTE
A fullword binary number set to the number of bytes to transmit.

BUF
Specifies the buffer containing the data to be transmitted. BUF should be the size specified in NBYTE.

NAME
Specifies the IPv4 socket address structure as follows:

160 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

FAMILY
A halfword binary field containing the IPv4 addressing family. For TCP/IP the value must be
decimal 2, indicating AF_INET.

PORT
A halfword binary field containing the port number bound to the socket.

IP-ADDRESS
A fullword binary field containing the socket's 32-bit IPv4 IP address.

RESERVED
Specifies an 8-byte reserved field. This field is required, but not used.

Specifies the IPv6 socket address structure as follows:
FAMILY

A halfword binary field containing the IPv6 addressing family. For TCP/IP the value is decimal 19,
indicating AF_INET6.

PORT
A halfword binary field containing the port number bound to the socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label. This field must be set to 0.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 IP address, in network byte order.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as appropriate for the scope of the
address carried in the IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field does not
identify the set of interfaces to be used, and can be specified for any address types and scopes.
For a link scope IPv6-ADDRESS, SCOPE-ID can specify a link index which identifies a set of
interfaces. For all other address scopes, SCOPE-ID must be set to 0.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥0

A successful call. The value is set to the number of bytes transmitted.
-1

Check ERRNO for an error code.

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket. SETSOCKOPT can be called only for
sockets in the AF_INET or AF_INET6 domains.

The OPTVAL and OPTLEN parameters are used to pass data used by the particular set command. The
OPTVAL parameter points to a buffer containing the data needed by the set command. The OPTLEN
parameter must be set to the size of the data pointed to by OPTVAL.

Table 41. SETSOCKOPT call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Chapter 7. CALL instruction application programming interface 161

Table 41. SETSOCKOPT call requirements (continued)

Condition Requirement

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 54 on page 162 shows an example of SETSOCKOPT call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SETSOCKOPT'.
 01 S PIC 9(4) BINARY.
 01 OPTNAME PIC 9(8) BINARY.
 01 OPTVAL PIC 9(16) BINARY.
 01 OPTLEN PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.
 01 OPTVAL PIC 9(16) BINARY.
 01 OPTLEN PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION
 CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME
 OPTVAL OPTLEN ERRNO RETCODE.

Figure 54. SETSOCKOPT call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_ADD_MEMBERSHIP

Use this option to enable an application
to join a multicast group on a specific
interface. An interface has to be specified
with this option. Only applications that
want to receive multicast datagrams need
to join multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a
4-byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

162 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_ADD_SOURCE_MEMBERSHIP

Use this option to enable an application
to join a source multicast group on
a specific interface and a specific
source address. You must specify an
interface and a source address with this
option. Applications that want to receive
multicast datagrams need to join source
multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for
the PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_BLOCK_SOURCE

Use this option to enable an application
to block multicast packets that have a
source address that matches the given
IPv4 source address. You must specify
an interface and a source address with
this option. The specified multicast group
must have been joined previously.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for
the PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_DROP_MEMBERSHIP

Use this option to enable an application to
exit a multicast group or to exit all sources
for a multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a
4-byte IPv4 multicast address
followed by a 4-byte IPv4
interface address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ.

N/A

Chapter 7. CALL instruction application programming interface 163

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_DROP_SOURCE_MEMBERSHIP

Use this option to enable an application to
exit a source multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for
the PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the
IPv4 interface address used for sending
outbound multicast datagrams from the
socket application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be
transmitted only on one interface at a
time.

A 4-byte binary field containing
an IPv4 interface address.

A 4-byte binary field containing
an IPv4 interface address.

IP_MULTICAST_LOOP

Use this option to control or determine
whether a copy of multicast datagrams
are looped back for multicast datagrams
sent to a group to which the sending host
itself belongs. The default is to loop the
datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will contain a 1.

If disabled, will contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the
IP time-to-live of outgoing multicast
datagrams. The default value is '01'x
meaning that multicast is available only to
the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

A 1-byte binary field containing
the value of '00'x to 'FF'x.

164 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IP_UNBLOCK_SOURCE

Use this option to enable an application
to unblock a previously blocked source for
a given IPv4 multicast group. You must
specify an interface and a source address
with this option.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ_SOURCE structure
contains a 4-byte IPv4 multicast
address followed by a 4-byte
IPv4 source address and a 4-
byte IPv4 interface address.

See SEZAINST(CBLOCK) for
the PL/I example of
IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for
the COBOL example of IP-
MREQ-SOURCE.

Chapter 7. CALL instruction application programming interface 165

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_ADDR_PREFERENCES

Use this option to query or set
IPv6 address preferences of a socket.
The default source address selection
algorithm considers these preferences
when it selects an IP address that is
appropriate to communicate with a given
destination address.

This is an AF_INET6-only socket option.

Result: These flags are only preferences.
The stack could assign a source IP
address that does not conform to the
IPV6_ADDR_PREFERENCES flags that you
specify.

Guideline: Use the INET6_IS_SRCADDR
function to test whether the source
IP address matches one or more
IPV6_ADDR_PREFERENCES flags.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

Some of these flags
are contradictory. Combining
contradictory flags, such as
IPV6_PREFER_SRC_CGA and
IPV6_PREFER_SRC_NONCGA,
results in error code EINVAL.

See IPV6_ADDR_PREFERENCES
and Mapping of GAI_HINTS/
GAI_ADDRINFO EFLAGS in
SEZAINST(CBLOCK) for the PL/I
example of the OPTNAME and
flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings
in SEZAINST(EZACOBOL) for
the COBOL example of the
OPTNAME and flag definitions.

Contains the 4-byte flags field
IPV6_ADDR_PREFERENCES_
FLAGS that is defined in
SYS1.MACLIB(BPXYSOCK) with
the following flags:
IPV6_PREFER_SRC_HOME
(X'00000001')

Prefer home address
IPV6_PREFER_SRC_COA
(X'00000002')

Prefer care-of address
IPV6_PREFER_SRC_TMP
(X'00000004')

Prefer temporary address
IPV6_PREFER_SRC_PUBLIC
(X'00000008')

Prefer public address
IPV6_PREFER_SRC_CGA
(X'00000010')

Prefer cryptographically
generated address

IPV6_PREFER_SRC_ NONCGA
(X'00000020')

Prefer non-cryptographically
generated address

See IPV6_ADDR_
PREFERENCES and Mapping
of GAI_HINTS/GAI_ADDRINFO
EFLAGS in SEZAINST(CBLOCK)
for the PL/I example of the
OPTNAME and flag definitions.

See IPV6_ADDR_PREFERENCES
and AI_EFLAGS mappings
in SEZAINST(EZACOBOL) for
the COBOL example of the
OPTNAME and flag definitions.

166 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_JOIN_GROUP

Use this option to control the reception
of multicast packets and specify that the
socket join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK)
for the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception
of multicast packets and specify that the
socket leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6
interface index number.

If the interface index number is
0, then the stack chooses the
local interface.

See the SEZAINST(CBLOCK)
for the PL/I example of
IPV6_MREQ.

See SEZAINST(EZACOBOL) for
the COBOL example of IPV6-
MREQ.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: An application must be
APF authorized to enable it to
set the hop limit value above
the system defined hop limit
value. CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of multicast hops.

Chapter 7. CALL instruction application programming interface 167

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

IPV6_MULTICAST_IF

Use this option to set or obtain the index
of the IPv6 interface used for sending
outbound multicast datagrams from the
socket application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine
whether a multicast datagram is looped
back on the outgoing interface by the IP
layer for local delivery when datagrams
are sent to a group to which the sending
host itself belongs. The default is to loop
multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the
hop limit used for outgoing unicast IPv6
packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If
not specified, then the default is
1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit
range.

Note: APF authorized
applications are permitted to set
a hop limit that exceeds the
system configured default. CICS
applications cannot execute as
APF authorized.

Contains a 4-byte binary value in
the range 0 – 255 indicating the
number of unicast hops.

IPV6_V6ONLY

Use this option to set or determine
whether the socket is restricted to send
and receive only IPv6 packets. The
default is to not restrict the sending and
receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

168 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_BLOCK_SOURCE

Use this option to enable an application
to block multicast packets that have a
source address that matches the given
source address. You must specify an
interface index and a source address with
this option. The specified multicast group
must have been joined previously.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface
index number followed by a
socket address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for
the PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_JOIN_GROUP

Use this option to enable an application
to join a multicast group on a specific
interface. You must specify an interface
index. Applications that want to receive
multicast datagrams must join multicast
groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_JOIN_SOURCE_GROUP

Use this option to enable an application to
join a source multicast group on a specific
interface and a source address. You must
specify an interface index and the source
address. Applications that want to receive
multicast datagrams only from specific
source addresses need to join source
multicast groups.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface
index number followed by a
socket address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for
the PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

Chapter 7. CALL instruction application programming interface 169

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

MCAST_LEAVE_GROUP

Use this option to enable an application to
exit a multicast group or exit all sources
for a given multicast groups.

Contains the GROUP_REQ
structure as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_REQ structure contains
a 4-byte interface index number
followed by a socket address
structure of the multicast
address.

See SEZAINST(CBLOCK) for the
PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to
exit a source multicast group.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface
index number followed by a
socket address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for
the PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application
to unblock a previously blocked source for
a given multicast group. You must specify
an interface index and a source address
with this option.

Contains the
GROUP_SOURCE_REQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
GROUP_SOURCE_REQ structure
contains a 4-byte interface
index number followed by a
socket address structure of the
multicast address and a socket
address structure of the source
address.

See SEZAINST(CBLOCK) for
the PL/I example of
GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for
the COBOL example of GROUP-
SOURCE-REQ.

N/A

170 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to
ASCII. When SO_ASCII is not set, data is
not translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_BROADCAST

Use this option to set or determine
whether a program can send broadcast
messages over the socket to destinations
that can receive datagram messages. The
default is disabled.

Note: This option has no meaning for
stream sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the
status of the debug option. The default is
disabled. The debug option controls the
recording of debug information.

Notes:

1. This is a REXX-only socket option.
2. This option has meaning only for

stream sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set,
data is not translated to or from EBCDIC.
This option is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is returned
and is optionally followed by the
name of the translation table
that is used if translation is
applied to the data.

SO_ERROR

Use this option to request pending
errors on the socket or to check
for asynchronous errors on connected
datagram sockets or for other errors that
are not explicitly returned by one of the
socket calls. The error status is clear
afterwards.

N/A A 4-byte binary field containing
the most recent ERRNO for the
socket.

Chapter 7. CALL instruction application programming interface 171

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_KEEPALIVE

Use this option to set or determine
whether the keep alive mechanism
periodically sends a packet on an
otherwise idle connection for a stream
socket.

The default is disabled.

When activated, the keep alive
mechanism periodically sends a packet
on an otherwise idle connection. If the
remote TCP does not respond to the
packet or to retransmissions of the
packet, the connection is terminated with
the error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine
how TCP/IP processes data that has not
been transmitted when a CLOSE is issued
for the socket. The default is disabled.

Notes:

1. This option has meaning only for
stream sockets.

2. If you set a zero linger time, the
connection cannot close in an orderly
manner, but stops, resulting in a RESET
segment being sent to the connection
partner. Also, if the aborting socket is
in nonblocking mode, the close call is
treated as though no linger option had
been set.

When SO_LINGER is set and CLOSE is
called, the calling program is blocked until
the data is successfully transmitted or the
connection has timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and
TCP/IP continues to attempt to send
data for a specified time. This usually
allows sufficient time to complete the
data transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP waits only the amount of time
specified in OPTVAL for SO_LINGER.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable
this option. Set LINGER to the
number of seconds that TCP/IP
lingers after the CLOSE is issued.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a
0 indicates disabled. LINGER
indicates the number of seconds
that TCP/IP will try to send data
after the CLOSE is issued.

172 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_OOBINLINE

Use this option to control or determine
whether out-of-band data is received.

Note: This option has meaning only for
stream sockets.

When this option is set, out-of-band data
is placed in the normal data input queue
as it is received and is available to a RECV
or a RECVFROM even if the OOB flag is not
set in the RECV or the RECVFROM.

When this option is disabled, out-of-band
data is placed in the priority data input
queue as it is received and is available
to a RECV or a RECVFROM only when
the OOB flag is set in the RECV or the
RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

• TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
Socket

• UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
Socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of
the data portion of the TCP/IP
receive buffer.

If disabled, contains a 0.

Chapter 7. CALL instruction application programming interface 173

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_RCVTIMEO

Use this option to control or determine
the maximum length of time that a
receive-type function can wait before it
completes.

If a receive-type function has blocked
for the maximum length of time that
was specified without receiving data,
control is returned with an errno set to
EWOULDBLOCK. The default value for this
option is 0, which indicates that a receive-
type function does not time out.

When the MSG_WAITALL flag (stream
sockets only) is specified, the timeout
takes precedence. The receive-type
function can return the partial count.
See the explanation of that operation's
MSG_WAITALL flag parameter.

The following receive-type functions are
supported:

• READ
• READV
• RECV
• RECVFROM
• RECVMSG

This option requires a TIMEVAL
structure, which is defined
in SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified
as fullword binary numbers.
The seconds can be a value
in the range 0 - 2678400
(equal to 31 days), and the
microseconds can be a value
in the range 0 - 1000000
(equal to 1 second). Although
TIMEVAL value can be specified
using microsecond granularity,
the internal TCP/IP timers that
are used to implement this
function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
the SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned
is in the range 0 - 2678400
(equal to 31 days). The number
of microseconds value that is
returned is in the range 0 -
1000000.

174 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_REUSEADDR

Use this option to control or determine
whether local addresses are reused. The
default is disabled. This alters the normal
algorithm used with BIND. The normal
BIND algorithm allows each Internet
address and port combination to be
bound only once. If the address and
port have been already bound, then a
subsequent BIND will fail and result error
will be EADDRINUSE.

When this option is enabled, the following
situations are supported:

• A server can BIND the same port
multiple times as long as every
invocation uses a different local IP
address and the wildcard address
INADDR_ANY is used only one time per
port.

• A server with active client connections
can be restarted and can bind to its port
without having to close all of the client
connections.

• For datagram sockets, multicasting is
supported so multiple bind() calls can
be made to the same class D address
and port number.

• If you require multiple servers to
BIND to the same port and listen
on INADDR_ANY, see the SHAREPORT
option on the PORT statement in
TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine
the size of the data portion of the TCP/IP
send buffer. The size is of the TCP/IP send
buffer is protocol specific and is based on
the following values:

• The TCPSENDBufrsize keyword on
the TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP
socket

• The UDPSENDBufrsize keyword on
the UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP
socket

• The default of 65535 for a raw socket

A 4-byte binary field.

To enable, set to a positive
value specifying the size of the
data portion of the TCP/IP send
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of the
data portion of the TCP/IP send
buffer.

If disabled, contains a 0.

Chapter 7. CALL instruction application programming interface 175

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

SO_SNDTIMEO

Use this option to control or determine
the maximum length of time that a send-
type function can remain blocked before it
completes.

If a send-type function has blocked for
this length of time, it returns with a partial
count or, if no data is sent, with an errno
set to EWOULDBLOCK. The default value
for this is 0, which indicates that a send-
type function does not time out.

For a SETSOCKOPT, the following send-
type functions are supported:

• SEND
• SENDMSG
• SENDTO
• WRITE
• WRITEV

This option requires a TIMEVAL
structure, which is defined in
the SYS1.MACLIB(BPXYRLIM)
macro. The TIMEVAL structure
contains the number of seconds
and microseconds specified as
fullword binary numbers. The
seconds value is in the range 0
- 2678400 (equal to 31 days),
and the microseconds value is in
the range 0 - 1000000 (equal
to 1 second). Although the
TIMEVAL value can be specified
using microsecond granularity,
the internal TCP/IP timers that
are used to implement this
function have a granularity of
approximately 100 milliseconds.

This option stores a TIMEVAL
structure that is defined in
SYS1.MACLIB(BPXYRLIM). The
TIMEVAL structure contains
the number of seconds
and microseconds, which are
specified as fullword binary
numbers. The number of
seconds value that is returned is
in the range 0 - 2678400 (equal
to 31 days). The microseconds
value that is returned is in the
range 0 - 1000000.

SO_TYPE

Use this option to return the socket type.

N/A A 4-byte binary field indicating
the socket type:

X'1' indicates SOCK_STREAM.

X'2' indicates SOCK_DGRAM.

X'3' indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine
whether a socket-specific timeout value
(in seconds) is to be used in place of
a configuration-specific value whenever
keep alive timing is active for that socket.

When activated, the socket-specified
timer value remains in effect until
respecified by SETSOCKOPT or until
the socket is closed. See the z/OS
Communications Server: IP Programmer's
Guide and Reference for more information
about the socket option parameters.

A 4-byte binary field.

To enable, set to a value in the
range of 1 – 2 147460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the specific
timer value (in seconds) that is
in effect for the given socket.

If disabled, contains a 0
indicating keep alive timing is
not active.

176 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 42. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)

TCP_NODELAY

Use this option to set or determine
whether data sent over the socket is
subject to the Nagle algorithm (RFC 896).

Under most circumstances, TCP sends
data when it is presented. When this
option is enabled, TCP will wait to
send small amounts of data until the
acknowledgment for the previous data
sent is received. When this option is
disabled, TCP will send small amounts of
data even before the acknowledgment for
the previous data sent is received.

Note: Use the following to set
TCP_NODELAY OPTNAME value for
COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP
 VALUE 2147483649.
01 TCP-NODELAY-REDEF REDEFINES
 TCP-NODELAY-VAL.
 05 FILLER PIC 9(6) BINARY.
 05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.

If enabled, contains a 0.

If disabled, contains a 1.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SETSOCKOPT. The field is left-aligned and padded to the right
with blanks.

S
A halfword binary number set to the socket whose options are to be set.

OPTNAME
Input parameter. See the table below for a list of the options and their unique requirements.

See the GETSOCKOPT command values information in z/OS Communications Server: IP Sockets
Application Programming Interface Guide and Reference for the numeric values of OPTNAME.

Note: COBOL programs cannot contain field names with the underbar character. Fields representing
the option name should contain dashes instead.

OPTVAL
Contains data which further defines the option specified in OPTNAME. For the SETSOCKOPT API,
OPTVAL will be an input parameter. See the table below for a list of the options and their unique
requirements.

OPTLEN
Input parameter. A fullword binary field containing the length of the data returned in OPTVAL. See the
table below for determining on what to base the value of OPTLEN.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

Chapter 7. CALL instruction application programming interface 177

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

SHUTDOWN
One way to terminate a network connection is to issue the CLOSE call which attempts to complete all
outstanding data transmission requests prior to breaking the connection. The SHUTDOWN call can be
used to close one-way traffic while completing data transfer in the other direction. The HOW parameter
determines the direction of traffic to shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter determines the amount of
time the system will wait before releasing the connection. For example, with a LINGER value of 30
seconds, system resources (including the IMS or CICS transaction) will remain in the system for up to 30
seconds after the CLOSE call is issued. In high volume, transaction-based systems like CICS and IMS, this
can impact performance severely.

If the SHUTDOWN call is issued when the CLOSE call is received, the connection can be closed
immediately, rather than waiting for the 30-second delay.

If you issue SHUTDOWN for a socket that currently has outstanding socket calls pending, see the Effect
of shutdown socket call table in the z/OS Communications Server: IP Sockets Application Programming
Interface Guide and Reference to determine the effects of this operation on the outstanding socket calls.

Table 43. SHUTDOWN call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 55 on page 179 shows an example of SHUTDOWN call instructions.

178 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SHUTDOWN'.
 01 S PIC 9(4) BINARY.
 01 HOW PIC 9(8) BINARY.
 88 END-FROM VALUE 0.
 88 END-TO VALUE 1.
 88 END-BOTH VALUE 2.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S HOW ERRNO RETCODE.

Figure 55. SHUTDOWN call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SHUTDOWN. The field is left-aligned and padded on the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket to be shutdown.

HOW
A fullword binary field. Set to specify whether all or part of a connection is to be shut down. The
following values can be set:
Value

Description
0 (END-FROM)

Ends further receive operations.
1 (END-TO)

Ends further send operations.
2 (END-BOTH)

Ends further send and receive operations.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket descriptor representing the
endpoint.

Chapter 7. CALL instruction application programming interface 179

Table 44. SOCKET call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 56 on page 180 shows an example of SOCKET call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'SOCKET'.
 * AF_INET
 01 AF PIC 9(8) COMP VALUE 2.

 * AF_INET6
 01 AF PIC 9(8) COMP VALUE 19.
 01 SOCTYPE PIC 9(8) BINARY.
 88 STREAM VALUE 1.
 88 DATAGRAM VALUE 2.
 88 RAW VALUE 3.
 01 PROTO PIC 9(8) BINARY.
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION AF SOCTYPE
 PROTO ERRNO RETCODE.

Figure 56. SOCKET call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing SOCKET. The field is left-aligned and padded on the right with
blanks.

AF
A fullword binary field set to the addressing family. For TCP/IP the value is set to decimal 2 for
AF_INET, or decimal 19, indicating AF_INET6.

SOCTYPE
A fullword binary field set to the type of socket required. The types are:
Value

Description

180 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

1
Stream sockets provide sequenced, two-way byte streams that are reliable and connection-
oriented. They support a mechanism for out-of-band data.

2
Datagram sockets provide datagrams, which are connectionless messages of a fixed maximum
length whose reliability is not guaranteed. Datagrams can be corrupted, received out of order, lost,
or delivered multiple times.

3
Raw sockets provide the interface to internal protocols (such as IP and ICMP).

PROTO
A fullword binary field set to the protocol to be used for the socket. If this field is set to 0, the default
protocol is used. For streams, the default is TCP; for datagrams, the default is UDP.

PROTO numbers are found in the hlq.etc.proto data set. For IPv6 raw sockets, PROTO cannot be set to
the following values:

Protocol name
Numeric value

IPROTO_HOPOPTS
0

IPPROTO_TCP
6

IPPROTO_UDP
17

IPPROTO_IPV6
41

IPPROTO_ROUTING
43

IPPROTO_FRAGMENT
44

IPPROTO_ESP
50

IPPROTO_AH
51

IPPROTO_NONE
59

IPPROTO_DSTOPTS
60

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
> or = 0

Contains the new socket descriptor.
-1

Check ERRNO for an error code.

Chapter 7. CALL instruction application programming interface 181

TAKESOCKET
The TAKESOCKET call acquires a socket from another program and creates a new socket. Typically, a
child server issues this call using client ID and socket descriptor data that it obtained from the concurrent
server. See “GIVESOCKET” on page 111 for a discussion of the use of GETSOCKET and TAKESOCKET
calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in RETCODE. You should use this
new socket descriptor in subsequent calls such as GETSOCKOPT, which require the S (socket descriptor)
parameter.

Table 45. TAKESOCKET call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 57 on page 182 shows an example of TAKESOCKET call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'TAKESOCKET'.
 01 SOCRECV PIC 9(4) BINARY.
 01 CLIENT.
 03 DOMAIN PIC 9(8) BINARY.
 03 NAME PIC X(8).
 03 TASK PIC X(8).
 03 RESERVED PIC X(20).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION SOCRECV CLIENT
 ERRNO RETCODE.

Figure 57. TAKESOCKET call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing TAKESOCKET. The field is left-aligned and padded to the right
with blanks.

SOCRECV
A halfword binary field set to the descriptor of the socket to be taken. The socket to be taken is
passed by the concurrent server.

182 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

CLIENT
Specifies the client ID of the program that is giving the socket. In CICS and IMS, these parameters are
passed by the Listener program to the program that issues the TAKESOCKET call.

• In CICS, the information is obtained using EXEC CICS RETRIEVE.
• In IMS, the information is obtained by issuing GU TIM.

DOMAIN
A fullword binary field set to the domain of the program giving the socket. It is decimal 2,
indicating AF_INET, or decimal 19, indicating AF_INET6.

Note: The TAKESOCKET can acquire only a socket of the same address family from a
GIVESOCKET.

NAME
Specifies an 8-byte character field set to the MVS address space identifier of the program that
gave the socket.

TASK
Specifies an 8-byte field set to the task identifier of the task that gave the socket.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application
ERRNO

A fullword binary field. If the value of RETCODE is negative, the field contains an error number. See
Appendix A, “Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥ 0

Contains the new socket descriptor.
-1

Check ERRNO for an error code.

TERMAPI
This call terminates the session created by INITAPI.

Table 46. TERMAPI call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Chapter 7. CALL instruction application programming interface 183

Table 46. TERMAPI call requirements (continued)

Condition Requirement

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 58 on page 184 shows an example of TERMAPI call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'TERMAPI'.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION.

Figure 58. TERMAPI call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing TERMAPI. The field is left-aligned and padded to the right with
blanks.

WRITE
The WRITE call writes data on a connected socket. This call is similar to SEND, except that it lacks the
control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the receiving buffer.

Stream sockets act like streams of information with no boundaries separating data. For example, if a
program wants to send 1000 bytes, each call to this function can send any number of bytes, up to the
entire 1000 bytes. The number of bytes sent will be returned in RETCODE. Therefore, programs using
stream sockets should place this call in a loop, calling this function until all data has been sent.

See “EZACIC04 ” on page 188 for a subroutine that will translate EBCDIC output data to ASCII.

Table 47. WRITE call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

184 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Figure 59 on page 185 shows an example of WRITE call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE IS 'WRITE'.
 01 S PIC 9(4) BINARY.
 01 NBYTE PIC 9(8) BINARY.
 01 BUF PIC X(length of buffer).
 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZASOKET' USING SOC-FUNCTION S NBYTE BUF
 ERRNO RETCODE.

Figure 59. WRITE call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
SOC-FUNCTION

A 16-byte character field containing WRITE. The field is left-aligned and padded on the right with
blanks.

S
A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be transmitted.

BUF
Specifies the buffer containing the data to be transmitted.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥0

A successful call. A return code greater than 0 indicates the number of bytes of data written.
-1

Check ERRNO for an error code.

WRITEV
The WRITEV function writes data on a socket from a set of buffers.

Table 48. WRITEV call requirements

Condition Requirement

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 7. CALL instruction application programming interface 185

Table 48. WRITEV call requirements (continued)

Condition Requirement

Amode: 31-bit or 24-bit.

Note: See the addressability mode (Amode) considerations under
“CALL instruction API environmental restrictions and programming
requirements” on page 51.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the primary
address space.

Figure 60 on page 186 shows an example of WRITEV call instructions.

 WORKING-STORAGE SECTION.
 01 SOC-FUNCTION PIC X(16) VALUE 'WRITEV'.
 01 S PIC 9(4) BINARY.
 01 IOVCNT PIC 9(8) BINARY.

 01 IOV.
 03 BUFFER-ENTRY OCCURS N TIMES.
 05 BUFFER-POINTER USAGE IS POINTER.
 05 RESERVED PIC X(4).
 05 BUFFER-LENGTH PIC 9(8) USAGE IS BINARY.

 01 ERRNO PIC 9(8) BINARY.
 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 SET BUFFER-POINTER(1) TO ADDRESS OF BUFFER1.
 SET BUFFER-LENGTH(1) TO LENGTH OF BUFFER1.
 SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.
 SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.
 " " " " "
 " " " " "
 SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.
 SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.

 CALL 'EZASOKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 60. WRITEV call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
S

A value or the address of a halfword binary number specifying the descriptor of the socket from which
the data is to be written.

IOV
An array of tripleword structures with the number of structures equal to the value in IOVCNT and the
format of the structures as follows:
Fullword 1

The address of a data buffer.
Fullword 2

Reserved.

186 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Fullword 3
The length of the data buffer referenced in Fullword 1.

IOVCNT
A fullword binary field specifying the number of data buffers provided for this call.

Parameters returned by the application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error number. See Appendix A,
“Return codes,” on page 267 for information about ERRNO return codes.

RETCODE
A fullword binary field.
Value

Meaning
<0

Check ERRNO for an error code.
0

Connection partner has closed connection.
>0

Number of bytes sent.

Using data translation programs for socket call interface
In addition to the socket calls, you can use utility programs to translate data.

Assembly language utility programs call format
The following example shows the assembly language call format for utility programs:

>>__CALL EZACIC04,(Inbuf, Inbuf_Length),VL__><

Data translation
TCP/IP hosts and networks use ASCII data notation; MVS TCP/IP and its subsystems use EBCDIC data
notation. In situations where data must be translated from one notation to the other, you can use the
following utility programs:

• EZACIC04 translates EBCDIC data to ASCII data using the translation table documented in the z/OS
Communications Server: IP Configuration Reference.

• EZACIC05 translates ASCII data to EBCDIC data using the translation table documented in the z/OS
Communications Server: IP Configuration Reference.

• EZACIC14 provides an alternative to EZACIC04 and translates EBCDIC data to ASCII data using the
translation table documented in Figure 69 on page 197.

• EZACIC15 provides an alternative to EZACIC05 and translates ASCII data to EBCDIC data using the
translation table documented in Figure 71 on page 199.

Bit-string processing
In C-language, bit strings are often used to convey flags, switch settings, and so on; TCP/IP makes
frequent uses of bit strings. However, because bit strings are difficult to decode in COBOL, TCP/IP
includes the following information:

• EZACIC06 translates bit-masks into character arrays and character arrays into bit-masks.
• EZACIC08 interprets the variable length address list in the HOSTENT structure returned by

GETHOSTBYNAME or GETHOSTBYADDR.

Chapter 7. CALL instruction application programming interface 187

• EZACIC09 interprets the ADDRINFO structure returned by GETADDRINFO.

EZACIC04
The EZACIC04 program is used to translate EBCDIC data to ASCII data. Figure 61 on page 188 shows
how EZACIC04 translates a byte of EBCDIC data.

 --
ASCII	second hex digit of byte of EBCDIC data															
output by	---															
EZACIC04	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	1A	09	1A	7F	1A	1A	1A	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	1A	0A	08	1A	18	19	1A	1A	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	1A	1A	1C	1A	1A	0A	17	1B	1A	1A	1A	1A	1A	05	06
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	1A	1A	16	1A	1A	1E	1A	04	1A	1A	1A	1A	14	15	1A
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	20	A6	E1	80	EB	90	9F	E2	AB	8B	9B	2E	3C	28	2B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	26	A9	AA	9C	DB	A5	99	E3	A8	9E	21	24	2A	29	3B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	2D	2F	DF	DC	9A	DD	DE	98	9D	AC	BA	2C	25	5F	3E
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	D7	88	94	B0	B1	B2	FC	D6	FB	60	3A	23	40	27	3D
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	F8	61	62	63	64	65	66	67	68	69	96	A4	F3	AF	AE
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
EBCDIC	9	8C	6A	6B	6C	6D	6E	6F	70	71	72	97	87	CE	93	F1
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	C8	7E	73	74	75	76	77	78	79	7A	EF	C0	DA	5B	F2
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	B5	B6	FD	B7	B8	B9	E6	BB	BC	BD	8D	D9	BF	5D	D8
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	7B	41	42	43	44	45	46	47	48	49	CB	CA	BE	E8	EC
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	7D	4A	4B	4C	4D	4E	4F	50	51	52	A1	AD	F5	F4	A3
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	5C	E7	53	54	55	56	57	58	59	5A	A0	85	8E	E9	E4
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	30	31	32	33	34	35	36	37	38	39	B3	F7	F0	FA	A7
 --

Figure 61. EZACIC04 EBCDIC-to-ASCII table

Figure 62 on page 188 shows an example of EZACIC04 call instructions.

 WORKING-STORAGE SECTION.
 01 OUT-BUFFER PIC X(length of output).
 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZACIC04' USING OUT-BUFFER LENGTH.
 IF RETURN-CODE > 0
 THEN
 DISPLAY 'TRANSLATION FAILED ' RETURN-CODE.

Figure 62. EZACIC04 call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

OUT-BUFFER
A buffer that contains the following information:

• When called, EBCDIC data
• Upon return, ASCII data

LENGTH
Specifies the length of the data to be translated.

188 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RETURN-CODE
Upon return, register 15 contains a return code value, which indicates if the data translation occurred
successfully. The return code can be one of the following values:
0

The data translation occurred.
8

Too many parameters passed, translation did not occur.
12

Zero buffer length passed, translation did not occur.
16

Zero buffer address passed, translation did not occur.

EZACIC05
The EZACIC05 program is used to translate ASCII data to EBCDIC data. EBCDIC data is required by
COBOL, PL/I, and assembly language programs. Figure 63 on page 189 shows how EZACIC05 translates a
byte of ASCII data.

 --
EBCDIC	second hex digit of byte of ASCII data															
output by	---															
EZACIC05	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	37	2D	2E	2F	16	05	25	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	3C	3D	32	26	18	19	3F	27	22	1D	35
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	40	5A	7F	7B	5B	6C	50	7D	4D	5D	5C	4E	6B	60	4B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	7A	5E	4C	7E	6E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	7C	C1	C2	C3	C4	C5	C6	C7	C8	C9	D1	D2	D3	D4	D5
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	D7	D8	D9	E2	E3	E4	E5	E6	E7	E8	E9	AD	E0	BD	5F
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	79	81	82	83	84	85	86	87	88	89	91	92	93	94	95
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	97	98	99	A2	A3	A4	A5	A6	A7	A8	A9	C0	4F	D0	A1
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	00	01	02	03	37	2D	2E	2F	16	05	25	0B	0C	0D	0E
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
ASCII	9	10	11	12	13	3C	3D	32	26	18	19	3F	27	22	1D	35
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	40	5A	7F	7B	5B	6C	50	7D	4D	5D	5C	4E	6B	60	AF
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	7A	5E	4C	7E	6E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	7C	C1	C2	C3	C4	C5	C6	C7	C8	C9	D1	D2	D3	D4	D5
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	D7	D8	D9	E2	E3	E4	E5	E6	E7	E8	E9	AD	E0	BD	5F
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	79	81	82	83	84	85	86	87	88	89	91	92	93	94	95
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	97	98	99	A2	A3	A4	A5	A6	A7	A8	A9	C0	4F	D0	A1
 --

Figure 63. EZACIC05 ASCII-to-EBCDIC table

Figure 64 on page 189 shows an example of EZACIC05 call instructions.

 WORKING-STORAGE SECTION.
 01 IN-BUFFER PIC X(length of output)
 01 LENGTH PIC 9(8) BINARY VALUE

 PROCEDURE DIVISION.
 CALL 'EZACIC05' USING IN-BUFFER LENGTH. IF RETURN-CODE > 0
 THEN
 DISPLAY 'TRANSLATION FAILED ' RETURN-CODE.

Figure 64. EZACIC05 call instruction example

Chapter 7. CALL instruction application programming interface 189

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

IN-BUFFER
A buffer that contains the following information:

• When called, ASCII data
• Upon return, EBCDIC data

LENGTH
Specifies the length of the data to be translated.

RETURN-CODE
Upon return, register 15 contains a return code value, which indicates if the data translation occurred
successfully. The return code can be one of the following values:
0

The data translation occurred.
8

Too many parameters passed, translation did not occur.
12

Zero buffer length passed, translation did not occur.
16

Zero buffer address passed, translation did not occur.

EZACIC06
The SELECT and SELECTEX call uses bit strings to specify the sockets to test and to return the results of
the test. Because bit strings are difficult to manage in COBOL, you might want to use the EZACIC06 utility
program to translate them to character strings to be used with the SELECT or SELECTEX call.

Figure 65 on page 190 shows an example of EZACIC06 call instructions.

WORKING-STORAGE SECTION.
 01 CHAR-MASK.
 05 CHAR-STRING PIC X(nn).

 01 CHAR-ARRAY REDEFINES CHAR-MASK.
 05 CHAR-ENTRY-TABLE OCCURS nn TIMES.
 10 CHAR-ENTRY PIC X(1).
 01 BIT-MASK.
 05 BIT-ARRAY-FWDS OCCURS (nn+31)/32 TIMES.
 10 BIT_ARRAY_WORD PIC 9 (8) COMP.

 01 BIT-FUNCTION-CODES.
 05 CTOB PIC X(4) VALUE 'CTOB'.
 05 BTOC PIC X(4) VALUE 'BTOC'.

 01 CHAR-MASK-LENGTH PIC 9(8) COMP VALUE nn.

 PROCEDURE CALL (to convert from character to binary)
 CALL 'EZACIC06' USING CTOB
 BIT-MASK
 CHAR-MASK
 CHAR-MASK-LENGTH
 RETCODE.

 PROCEDURE CALL (to convert from binary to character)
 CALL 'EZACIC06' USING BTOC
 BIT-MASK
 CHAR-MASK
 CHAR-MASK-LENGTH
 RETCODE.

Figure 65. EZACIC06 call instruction example

190 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

CHAR-MASK
Specifies the character array where nn is the maximum number of sockets in the array. The first
character in the array represents socket 0, the second represents socket 1, and so on. Note that
the index is 1 greater than the socket number [for example, CHAR-ENTRY(1) represents socket 0,
CHAR-ENTRY (2) represents socket 1, and so on.]

BIT-MASK
Specifies the bit string to be translated for the SELECT call. Within each fullword of the bit string,
the bits are ordered right to left. The rightmost bit in the first fullword represents socket 0 and the
leftmost bit represents socket 31. The rightmost bit in the second fullword represents socket 32 and
the leftmost bit represents socket 63. The number of fullwords in the bit string should be calculated
by dividing the sum of 31 and the character array length by 32 (truncate the remainder).

COMMAND
BTOC specifies bit string to character array translation.

CTOB specifies character array to bit string translation.

CHAR-MASK-LENGTH
Specifies the length of the character array. This field should be no greater than 1 plus the MAXSNO
value returned on the INITAPI (which is usually the same as the MAXSOC value specified on the
INITAPI).

RETCODE
A binary field that returns one of the following values:
Value

Description
0

Successful call.
-1

Check ERRNO for an error code.

Examples

If you want to use the SELECT call to test sockets 0, 5, and 32, and you are using a character array
to represent the sockets, you must set the appropriate characters in the character array to 1. In this
example, index positions 1, 6 and 33 in the character array are set to 1. Then you can call EZACIC06
with the COMMAND parameter set to CTOB. When EZACIC06 returns, the first fullword of BIT-MASK
contains B'00000000000000000000000000100001' to indicate that sockets 0 and 5 will be checked.
The second word of BIT-MASK contains B'00000000000000000000000000000001' to indicate that
socket 32 will be checked. These instructions process the bit string shown in the following example:

MOVE ZEROS TO CHAR-STRING.
MOVE '1' TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(33).
CALL 'EZACIC06' USING TOKEN CTOB BIT-MASK CH-MASK
 CHAR-MASK-LENGTH RETCODE.
MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket activity, enter the
following instructions.

MOVE TO BIT-MASK.
CALL 'EZACIC06' USING TOKEN BTOC BIT-MASK CH-MASK
 CHAR-MASK-LENGTH RETCODE.
PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX
 FROM 1 BY 1 UNTIL IDX EQUAL CHAR-MASK-LENGTH.

TEST-SOCKET.
 IF CHAR-ENTRY(IDX) EQUAL '1'
 THEN PERFORM SOCKET-RESPONSE THRU SOCKET-RESPONSE-EXIT
 ELSE NEXT SENTENCE.

Chapter 7. CALL instruction application programming interface 191

TEST-SOCKET-EXIT.
 EXIT.

EZACIC08
The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket calls that return a
structure known as HOSTENT. A given TCP/IP host can have multiple alias names and host IP addresses.

TCP/IP uses indirect addressing to connect the variable number of alias names and IP addresses in the
HOSTENT structure that are returned by the GETHOSTBYADDR and GETHOSTBYNAME calls.

If you are coding in PL/I or assembly language, the HOSTENT structure can be processed in a relatively
straight-forward manner. However, if you are coding in COBOL, HOSTENT can be more difficult to process
and you should use the EZACIC08 subroutine to process it for you.

It works as follows:

1. GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that indirectly addresses the
lists of alias names and IP addresses.

2. Upon return from GETHOSTBYADDR or GETHOSTBYNAME, your program calls EZACIC08 and passes
it the address of the HOSTENT structure. EZACIC08 processes the structure and returns the following
information:

• The length of host name, if present
• The host name
• The number of alias names for the host
• The alias name sequence number
• The length of the alias name
• The alias name
• The host IP address type, always 2 for AF_INET
• The host IP address length, always 4 for AF_INET
• The number of host IP addresses for this host
• The host IP address sequence number
• The host IP address

3. If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one alias name or host IP
address, the application program should repeat the call to EZACIC08 until all alias names and host IP
addresses have been retrieved.

Figure 66 on page 193 shows an example of EZACIC08 call instructions.

192 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 WORKING-STORAGE SECTION.

 01 HOSTENT-ADDR PIC 9(8) BINARY.
 01 HOSTNAME-LENGTH PIC 9(4) BINARY.
 01 HOSTNAME-VALUE PIC X(255).
 01 HOSTALIAS-COUNT PIC 9(4) BINARY.
 01 HOSTALIAS-SEQ PIC 9(4) BINARY.
 01 HOSTALIAS-LENGTH PIC 9(4) BINARY.
 01 HOSTALIAS-VALUE PIC X(255).
 01 HOSTADDR-TYPE PIC 9(4) BINARY.
 01 HOSTADDR-LENGTH PIC 9(4) BINARY.
 01 HOSTADDR-COUNT PIC 9(4) BINARY.
 01 HOSTADDR-SEQ PIC 9(4) BINARY.
 01 HOSTADDR-VALUE PIC 9(8) BINARY.
 01 RETURN-CODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 CALL 'EZASOKET' USING 'GETHOSTBYADDR'
 HOSTADDR HOSTENT-ADDR
 RETCODE.

 CALL 'EZASOKET' USING 'GETHOSTBYNAME'
 NAMELEN NAME HOSTENT-ADDR
 RETCODE.

 CALL 'EZACIC08' USING HOSTENT-ADDR HOSTNAME-LENGTH
 HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ
 HOSTALIAS-LENGTH HOSTALIAS-VALUE
 HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT
 HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE.

Figure 66. EZAZIC08 call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application
HOSTENT-ADDR

This fullword binary field must contain the address of the HOSTENT structure (as returned by the
GETHOSTBYxxxx call). This variable is the same as the variable HOSTENT in the GETHOSTBYADDR
and GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ
This halfword field is used by EZACIC08 to index the list of alias names. When EZACIC08 is called,
it adds 1 to the current value of HOSTALIAS-SEQ and uses the resulting value to index into the
table of alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field should be set to
0 for the initial call to EZACIC08. For all subsequent calls to EZACIC08, this field should contain the
HOSTALIAS-SEQ number returned by the previous invocation.

HOSTADDR-SEQ
This halfword field is used by EZACIC08 to index the list of IP addresses. When EZACIC08 is called,
it adds 1 to the current value of HOSTADDR-SEQ and uses the resulting value to index into the table
of IP addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field should be set to 0
for the initial call to EZACIC08. For all subsequent calls to EZACIC08, this field should contain the
HOSTADDR-SEQ number returned by the previous call.

Parameter values returned to the application
HOSTNAME-LENGTH

This halfword binary field contains the length of the host name (if host name was returned).
HOSTNAME-VALUE

This 255-byte character string contains the host name (if host name was returned).
HOSTALIAS-COUNT

This halfword binary field contains the number of alias names returned.
HOSTALIAS-SEQ

This halfword binary field is the sequence number of the alias name currently found in HOSTALIAS-
VALUE.

Chapter 7. CALL instruction application programming interface 193

HOSTALIAS-LENGTH
This halfword binary field contains the length of the alias name currently found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE
This 255-byte character string contains the alias name returned by this instance of the call. The length
of the alias name is contained in HOSTALIAS-LENGTH.

HOSTADDR-TYPE
This halfword binary field contains the type of host address. For FAMILY type AF_INET, HOSTADDR-
TYPE is always 2.

HOSTADDR-LENGTH
This halfword binary field contains the length of the host IP address currently found in HOSTADDR-
VALUE. For FAMILY type AF_INET, HOSTADDR-LENGTH is always set to 4.

HOSTADDR-COUNT
This halfword binary field contains the number of host IP addresses returned by this instance of the
call.

HOSTADDR-SEQ
This halfword binary field contains the sequence number of the host IP address currently found in
HOSTADDR-VALUE.

HOSTADDR-VALUE
This fullword binary field contains a host IP address.

RETURN-CODE
This fullword binary field contains the EZACIC08 return code:
Value

Description
0

Successful completion.
-1

HOSTENT address is not valid.
-2

A value of HOSTALIAS-SEQ is not valid.
-3

A value of HOSTADDR-SEQ is not valid.

EZACIC09

The GETADDRINFO call was derived from the C socket call that return a structure known as RES. A given
TCP/IP host can have multiple sets of NAMES. TCP/IP uses indirect addressing to connect the variable
number of NAMES in the RES structure that is returned by the GETADDRINFO call. If you are coding in
PL/I or assembly language, the RES structure can be processed in a relatively straight-forward manner.
However, if you are coding in COBOL, RES can be more difficult to process and you should use the
EZACIC09 subroutine to process it for you. It works as follows:

1. GETADDRINFO returns a RES structure that indirectly addresses the lists of socket address structures.
2. Upon return from GETADDRINFO, your program calls EZACIC09 and passes it the address of the next

address information structure as referenced by the NEXT argument. EZACIC09 processes the structure
and returns the following information: a. The socket address structure b. The next address information
structure.

3. If the GETADDRINFO call returns more than one socket address structure the application program
should repeat the call to EZACIC09 until all socket address structures have been retrieved.

Figure 67 on page 195 shows an example of EZACIC09 call instructions.

194 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

WORKING-STORAGE SECTION.
 *
 * Variables used for the GETADDRINFO call
 *
 01 getaddrinfo-parms.
 02 node-name pic x(255).
 02 node-name-len pic 9(8) binary.
 02 service-name pic x(32).
 02 service-name-len pic 9(8) binary.
 02 canonical-name-len pic 9(8) binary.
 02 ai-passive pic 9(8) binary value 1.
 02 ai-canonnameok pic 9(8) binary value 2.
 02 ai-numerichost pic 9(8) binary value 4.
 02 ai-numericserv pic 9(8) binary value 8.
 02 ai-v4mapped pic 9(8) binary value 16.
 02 ai-all pic 9(8) binary value 32.
 02 ai-addrconfig pic 9(8) binary value 64.
 *
 * Variables used for the EZACIC09 call
 *
 01 ezacic09-parms.
 02 res usage is pointer.
 02 res-name-len pic 9(8) binary.
 02 res-canonical-name pic x(256).
 02 res-name usage is pointer.
 02 res-next-addrinfo usage is pointer.
 *
 * Socket address structure
 *
 01 server-socket-address.
 05 server-family pic 9(4) Binary Value 19.
 05 server-port pic 9(4) Binary Value 9997.
 05 server-flowinfo pic 9(8) Binary Value 0.
 05 server-ipaddr.
 10 filler pic 9(16) binary value 0.
 10 filler pic 9(16) binary value 0.
 05 server-scopeid pic 9(8) Binary Value 0.

 LINKAGE SECTION.
 01 L1.
 03 HINTS-ADDRINFO.
 05 HINTS-AI-FLAGS PIC 9(8) BINARY.
 05 HINTS-AI-FAMILY PIC 9(8) BINARY.
 05 HINTS-AI-SOCKTYPE PIC 9(8) BINARY.
 05 HINTS-AI-PROTOCOL PIC 9(8) BINARY.
 05 FILLER PIC 9(8) BINARY.
 05 FILLER PIC 9(8) BINARY.
 05 FILLER PIC 9(8) BINARY.
 05 FILLER PIC 9(8) BINARY.
 03 HINTS-ADDRINFO-PTR USAGE IS POINTER.
 03 RES-ADDRINFO-PTR USAGE IS POINTER.
 *
 * RESULTS ADDRESS INFO
 *
 01 RESULTS-ADDRINFO.
 05 RESULTS-AI-FLAGS PIC 9(8) BINARY.
 05 RESULTS-AI-FAMILY PIC 9(8) BINARY.
 05 RESULTS-AI-SOCKTYPE PIC 9(8) BINARY.
 05 RESULTS-AI-PROTOCOL PIC 9(8) BINARY.
 05 RESULTS-AI-ADDR-LEN PIC 9(8) BINARY.
 05 RESULTS-AI-CANONICAL-NAME USAGE IS POINTER.
 05 RESULTS-AI-ADDR-PTR USAGE IS POINTER.
 05 RESULTS-AI-NEXT-PTR USAGE IS POINTER.

Figure 67. EZACIC09 call instruction example (Part 1 of 2)

Chapter 7. CALL instruction application programming interface 195

 *
 * SOCKET ADDRESS STRUCTURE FROM EZACIC09.
 *
 01 OUTPUT-NAME-PTR USAGE IS POINTER.
 01 OUTPUT-IP-NAME.
 03 OUTPUT-IP-FAMILY PIC 9(4) BINARY.
 03 OUTPUT-IP-PORT PIC 9(4) BINARY.
 03 OUTPUT-IP-SOCK-DATA PIC X(24).
 03 OUTPUT-IPV4-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
 05 OUTPUT-IPV4-IPADDR PIC 9(8) BINARY.
 05 FILLER PIC X(20).
 03 OUTPUT-IPV6-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
 05 OUTPUT-IPV6-FLOWINFO PIC 9(8) BINARY.
 05 OUTPUT-IPV6-IPADDR.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 05 OUTPUT-IPV6-SCOPEID PIC 9(8) BINARY.

 PROCEDURE DIVISION USING L1.
 *
 * Get and address from the resolver.
 *
 move 'yournodename' to node-name.
 move 12 to node-name-len.
 move spaces to service-name.
 move 0 to service-name-len.
 move af-inet6 to hints-ai-family.
 move 49 to hints-ai-flags
 move 0 to hints-ai-socktype.
 move 0 to hints-ai-protocol.
 set address of results-addrinfo to res-addrinfo-ptr.
 set hints-addrinfo-ptr to address of hints-addrinfo.
 call 'EZASOKET' using soket-getaddrinfo
 node-name node-name-len
 service-name service-name-len
 hints-addrinfo-ptr
 res-addrinfo-ptr
 canonical-name-len
 errno retcode.

 *
 * Use EZACIC09 to extract the IP address
 *
 set address of results-addrinfo to res-addrinfo-ptr.
 set res to address of results-addrinfo.
 move zeros to res-name-len.
 move spaces to res-canonical-name.
 set res-name to nulls.
 set res-next-addrinfo to nulls.
 call 'EZACIC09' using res
 res-name-len
 res-canonical-name
 res-name
 res-next-addrinfo
 retcode.
 set address of output-ip-name to res-name.
 move output-ipv6-ipaddr to server-ipaddr.

Figure 68. EZACIC09 call instruction example (Part 2 of 2)

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

Parameter values set by the application:
RES

This fullword binary field must contain the address of the ADDRINFO structure (as returned by the
GETADDRINFO call). This variable is the same as the RES variable in the GETADDRINFO socket call.

RES-NAME-LEN
A fullword binary field that will contain the length of the socket address structure as returned by the
GETADDRINFO call.

196 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Parameter values returned to the application:
Description

RES-CANONICAL-NAME
A field large enough to hold the canonical name. The maximum field size is 256 bytes. The canonical
name length field will indicate the length of the canonical name as returned by the GETADDRINFO
call.

RES-NAME
The address of the subsequent socket address structure.

RES-NEXT
The address of the next address information structure.

RETURN-CODE
CODE This fullword binary field contains the EZACIC09 return code:
Value

Description
0

Successful call.
-1

Invalid RES address.

EZACIC14
The EZACIC14 program is an alternative to EZACIC04, which translates EBCDIC data to ASCII data.
Figure 69 on page 197 shows how EZACIC14 translates a byte of EBCDIC data.

 --
ASCII	second hex digit of byte of EBCDIC data															
output by	---															
EZACIC14	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	9C	09	86	7F	97	8D	8E	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	9D	85	08	87	18	19	92	8F	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	80	81	82	83	84	0A	17	1B	88	89	8A	8B	8C	05	06
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	90	91	16	93	94	95	96	04	98	99	9A	9B	14	15	9E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	20	A0	E2	E4	E0	E1	E3	E5	E7	F1	A2	2E	3C	28	2B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	26	E9	EA	EB	E8	ED	EE	EF	EC	DF	21	24	2A	29	3B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	2D	2F	C2	C4	C0	C1	C3	C5	C7	D1	A6	2C	25	5F	3E
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	F8	C9	CA	CB	C8	CD	CE	CF	CC	60	3A	23	40	27	3D
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	D8	61	62	63	64	65	66	67	68	69	AB	BB	F0	FD	FE
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
EBCDIC	9	B0	6A	6B	6C	6D	6E	6F	70	71	72	AA	BA	E6	B8	C6
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	B5	7E	73	74	75	76	77	78	79	7A	A1	BF	D0	5B	DE
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	AC	A3	A5	B7	A9	A7	B6	BC	BD	BE	DD	A8	AF	5D	B4
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	7B	41	42	43	44	45	46	47	48	49	AD	F4	F6	F2	F3
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	7D	4A	4B	4C	4D	4E	4F	50	51	52	B9	FB	FC	F9	FA
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	5C	F7	53	54	55	56	57	58	59	5A	B2	D4	D6	D2	D3
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	30	31	32	33	34	35	36	37	38	39	B3	DB	DC	D9	DA
 --

Figure 69. EZACIC14 EBCDIC-to-ASCII table

Figure 70 on page 198 shows an example of EZACIC14 call instructions.

Chapter 7. CALL instruction application programming interface 197

 WORKING-STORAGE SECTION.
 01 OUT-BUFFER PIC X(length of output).
 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZACIC14' USING OUT-BUFFER LENGTH. IF RETURN-CODE > 0
 THEN
 DISPLAY 'TRANSLATION FAILED ' RETURN-CODE.

Figure 70. EZACIC14 call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

OUT-BUFFER
A buffer that contains the following information:

• When called, EBCDIC data
• Upon return, ASCII data

LENGTH
Specifies the length of the data to be translated.

RETURN-CODE
Upon return, register 15 contains a return code value, which indicates if the data translation occurred
successfully. The return code can be one of the following values:
0

The data translation occurred.
8

Too many parameters passed, translation did not occur.
12

Zero buffer length passed, translation did not occur.
16

Zero buffer address passed, translation did not occur.

EZACIC15

The EZACIC15 program is an alternative to EZACIC05, which translates ASCII data to EBCDIC data.
Figure 71 on page 199 shows how EZACIC15 translates a byte of ASCII data.

198 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 --
EBCDIC	second hex digit of byte of ASCII data															
output by	---															
EZACIC15	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--																
	0	00	01	02	03	37	2D	2E	2F	16	05	25	0B	0C	0D	0E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	1	10	11	12	13	3C	3D	32	26	18	19	3F	27	1C	1D	1E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	2	40	5A	7F	7B	5B	6C	50	7D	4D	5D	5C	4E	6B	60	4B
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	3	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	7A	5E	4C	7E	6E
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	4	7C	C1	C2	C3	C4	C5	C6	C7	C8	C9	D1	D2	D3	D4	D5
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	5	D7	D8	D9	E2	E3	E4	E5	E6	E7	E8	E9	AD	E0	BD	5F
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
first	6	79	81	82	83	84	85	86	87	88	89	91	92	93	94	95
hex	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
digit	7	97	98	99	A2	A3	A4	A5	A6	A7	A8	A9	C0	4F	D0	A1
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
byte	8	20	21	22	23	24	15	06	17	28	29	2A	2B	2C	09	0A
of	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
ASCII	9	30	31	1A	33	34	35	36	08	38	39	3A	3B	04	14	3E
data	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	A	41	AA	4A	B1	9F	B2	6A	B5	BB	B4	9A	8A	B0	CA	AF
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	B	90	8F	EA	FA	BE	A0	B6	B3	9D	DA	9B	8B	B7	B8	B9
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	C	64	65	62	66	63	67	9E	68	74	71	72	73	78	75	76
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	D	AC	69	ED	EE	EB	EF	EC	BF	80	FD	FE	FB	FC	BA	AE
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	E	44	45	42	46	43	47	9C	48	54	51	52	53	58	55	56
	---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--															
	F	8C	49	CD	CE	CB	CF	CC	E1	70	DD	DE	DB	DC	8D	8E
 --

Figure 71. EZACIC15 ASCII-to-EBCDIC table

Figure 72 on page 199 shows an example of EZACIC15 call instructions.

 WORKING-STORAGE SECTION.
 01 OUT-BUFFER PIC X(length of output).
 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE DIVISION.
 CALL 'EZACIC15' USING OUT-BUFFER LENGTH. IF RETURN-CODE > 0
 THEN
 DISPLAY 'TRANSLATION FAILED ' RETURN-CODE.

Figure 72. EZACIC15 call instruction example

For equivalent PL/I and assembly language declarations, see “Converting parameter descriptions” on
page 54.

OUT-BUFFER
A buffer that contains the following infomation:

• When called, ASCII data
• Upon return, EBCDIC data

LENGTH
Specifies the length of the data to be translated.

RETURN-CODE
Upon return, register 15 contains a return code value, which indicates if the data translation occurred
successfully. The return code can be one of the following values:
0

The data translation occurred.
8

Too many parameters passed, translation did not occur.

Chapter 7. CALL instruction application programming interface 199

12
Zero buffer length passed, translation did not occur.

16
Zero buffer address passed, translation did not occur.

Call interface sample programs
This information provides sample programs for the call interface that you can use for a PL/I or COBOL
application program.

The following are the sample programs that are available in the SEZAINST data set:

Program Description

EZASOKPS PL/I call interface sample IPv4 server program

EZASOKPC PL/I call interface sample IPv4 client program

EZASO6PS PL/I call interface sample IPv6 server program

EZASO6PC PL/I call interface sample IPv6 client program

CBLOCK PL/I common variables

EZACOBOL COBOL common variables

EZASO6CS COBOL call interface sample IPv6 server program

EZASO6CC COBOL call interface sample IPv6 client program

Sample code for IPv4 server program
The EZASOKPS PL/I sample program is a server program that shows you how to use the following calls:

• ACCEPT
• BIND
• CLOSE
• GETSOCKNAME
• INITAPI
• LISTEN
• READ
• SOCKET
• TERMAPI
• WRITE

 /***/
 /* */
 /* MODULE NAME: EZASOKPS - THIS IS A VERY SIMPLE IPV4 SERVER */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* (C) Copyright IBM Corp. 1994, 2005 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: CSV1R7 */
 /* */
 /***/
 EZASOKPS: PROC OPTIONS(MAIN);

 /* INCLUDE CBLOCK - common variables */

200 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 % include CBLOCK;

 ID.TCPNAME = 'TCPIP'; /* Set TCP to use */
 ID.ADSNAME = 'EZASOKPS'; /* and address space name */
 open file(driver);

 /***/
 /* */
 /* Execute INITAPI */
 /* */
 /***/

 /***/
 /* */
 /* Uncomment this code to set max sockets to the maximum. */
 /* */
 /* MAXSOC_INPUT = 65535; */
 /* MAXSOC_FWD = MAXSOC_INPUT; */
 /***/

 call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
 MAXSNO, ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = 'FAIL: initapi' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute SOCKET */
 /* */
 /***/

 call ezasoket(SOCKET, AF_INET, TYPE_STREAM, PROTO,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: socket, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 else sock_stream = retcode;

 /***/
 /* */
 /* Execute BIND */
 /* */
 /***/

 name_id.port = 8888;
 name_id.address = '01234567'BX; /* internet address */
 call ezasoket(BIND, SOCK_STREAM, NAME_ID,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: bind' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute GETSOCKNAME */
 /* */
 /***/

 name_id.port = 8888;
 name_id.address = '01234567'BX; /* internet address */
 call ezasoket(GETSOCKNAME, SOCK_STREAM,
 NAME_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getsockname, stream, internet' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'getsockname = ' || name_id.address;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute LISTEN */
 /* */
 /***/

 backlog = 5;
 call ezasoket(LISTEN, SOCK_STREAM, BACKLOG,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */

Chapter 7. CALL instruction application programming interface 201

 msg = 'FAIL: listen w/ backlog = 5' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute ACCEPT */
 /* */
 /***/

 name_id.port = 8888;
 name_id.address = '01234567'BX; /* internet address */
 call ezasoket(ACCEPT, SOCK_STREAM,
 NAME_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: accept' || errno;
 write file(driver) from (msg);
 end;
 else do;
 accpsock = retcode;
 msg = 'accept socket = ' || accpsock;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute READ */
 /* */
 /***/

 nbyte = length(bufin);
 call ezasoket(READ, ACCPSOCK,
 NBYTE, BUFIN, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: read' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'read = ' || bufin;
 write file(driver) from (msg);
 bufout = bufin;
 nbyte = retcode;
 end;

 /***/
 /* */
 /* Execute WRITE */
 /* */
 /***/

 call ezasoket(WRITE, ACCPSOCK, NBYTE, BUFOUT,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: write' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'write = ' || bufout;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute CLOSE accept socket */
 /* */
 /***/

 call ezasoket(CLOSE, ACCPSOCK,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: close, accept sock' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute TERMAPI */
 /* */
 /***/

 getout:
 call ezasoket(TERMAPI);

 close file(driver);
 end ezasokps;

Figure 73. EZASOKPS PL/1 sample server program for IPv4

202 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Sample program for IPv4 client program
The EZASOKPC PL/I sample program is a client program that shows you how to use the following calls
provided by the call socket interface:

• CONNECT
• GETPEERNAME
• INITAPI
• READ
• SHUTDOWN
• SOCKET
• TERMAPI
• WRITE

 /***/
 /* */
 /* MODULE NAME: EZASOKPC - THIS IS A VERY SIMPLE IPV4 CLIENT */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* (C) Copyright IBM Corp. 1994, 2002 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: CSV1R4 */
 /* */
 /***/
 EZASOKPC: PROC OPTIONS(MAIN);

 /* INCLUDE CBLOCK - common variables */
 % include CBLOCK;

 ID.TCPNAME = 'TCPIP'; /* Set TCP to use */
 ID.ADSNAME = 'EZASOKPC'; /* and address space name */
 open file(driver);

 /***/
 /* */
 /* Execute INITAPI */
 /* */
 /***/

 call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
 MAXSNO, ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = 'FAIL: initapi' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute SOCKET */
 /* */
 /***/

 call ezasoket(SOCKET, AF_INET, TYPE_STREAM, PROTO,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: socket, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 sock_stream = retcode; /* save socket descriptor */

 /***/
 /* Execute CONNECT */
 /* */
 /***/

 name_id.port = 8888;
 name_id.address = '01234567'BX; /* internet address */
 call ezasoket(CONNECT, SOCK_STREAM, NAME_ID,
 ERRNO, RETCODE);

Chapter 7. CALL instruction application programming interface 203

 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: connect, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute GETPEERNAME */
 /* */
 /***/

 call ezasoket(GETPEERNAME, SOCK_STREAM,
 NAME_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getpeername' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'getpeername =' || name_id.address;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute WRITE */
 /* */
 /***/

 bufout = message;
 nbyte = length(message);
 call ezasoket(WRITE, SOCK_STREAM, NBYTE, BUFOUT,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: write' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'write = ' || bufout;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute READ */
 /* */
 /***/

 nbyte = length(bufin);
 call ezasoket(READ, SOCK_STREAM,
 NBYTE, BUFIN, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: read' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'read = ' || bufin;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute SHUTDOWN from/to */
 /* */
 /***/

 getout:
 how = 2;
 call ezasoket(SHUTDOWN, SOCK_STREAM, HOW,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: shutdown' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute TERMAPI */
 /* */
 /***/

 call ezasoket(TERMAPI);

 close file(driver);
 end ezasokpc;

Figure 74. EZASOKPC PL/1 sample client program for IPv4

204 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Sample code for IPv6 server program
The EZASO6PS PL/I sample program is a server program that shows you how to use the following calls
provided by the call socket interface:

• ACCEPT
• BIND
• CLOSE
• EZACIC09
• FREEADDRINFO
• GETADDRINFO
• GETHOSTNAME
• GETSOCKNAME
• INITAPI
• LISTEN
• NTOP
• PTON
• READ
• SOCKET
• TERMAPI
• WRITE

 /***/
 /* */
 /* MODULE NAME: EZASO6PS - THIS IS A VERY SIMPLE IPV6 SERVER */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* (C) Copyright IBM Corp. 2002, 2005 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: CSV1R7 */
 /* */
 /***/
 EZASO6PS: PROC OPTIONS(MAIN);

 /* INCLUDE CBLOCK - common variables */
 % include CBLOCK;

 ID.TCPNAME = 'TCPCS'; /* Set TCP to use */
 ID.ADSNAME = 'EZASO6PS'; /* and address space name */
 open file(driver);

 /***/
 /* */
 /* Execute INITAPI */
 /* */
 /***/

 /***/
 /* */
 /* Uncomment this code to set max sockets to the maximum. */
 /* */
 /* MAXSOC_INPUT = 65535; */
 /* MAXSOC_FWD = MAXSOC_INPUT; */
 /***/

 call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
 MAXSNO, ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = 'FAIL: initapi' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

Chapter 7. CALL instruction application programming interface 205

 /***/
 /* */
 /* Execute SOCKET */
 /* */
 /***/

 call ezasoket(SOCKET, AF_INET6, TYPE_STREAM, PROTO,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: socket, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 else sock_stream = retcode;
 /***/
 /* */
 /* Execute PTON */
 /* */
 /***/
 PRESENTABLE_ADDR = IPV6_LOOPBACK; /* Set IP address to use */
 PRESENTABLE_ADDR_LEN = LENGTH(PRESENTABLE_ADDR) ; /* and its length */
 call ezasoket(PTON, AF_INET6, PRESENTABLE_ADDR,
 PRESENTABLE_ADDR_LEN, NUMERIC_ADDR,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: pton' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 name6_id.address = NUMERIC_ADDR; /* IPV6 internet address */
 /***/
 /* */
 /* Execute GETHOSTNAME */
 /* */
 /***/
 call ezasoket(GETHOSTNAME, HOSTNAME_LEN, HOSTNAME,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: gethostname' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 else do;
 msg = 'gethostname = ' || HOSTNAME;
 write file(driver) from (msg);
 GAI_NODE = HOSTNAME; /* Set host name for getaddrinfo to use */
 end;

 /***/
 /* */
 /* Execute GETADDRINFO */
 /* */
 /***/
 GAI_SERVLEN = 0; /* set service length */
 GAI_HINTS.FLAGS = ai_CANONNAMEOK; /* Request canonical name */
 HINTS = ADDR(GAI_HINTS); /* Set results pointer */
 call ezasoket(GETADDRINFO,
 GAI_NODE, GAI_NODELEN,
 GAI_SERVICE, GAI_SERVLEN,
 HINTS, RES,
 CANONNAME_LEN,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getaddrinfo' || errno;
 write file(driver) from (msg);
 end;
 else do; /* process returned RES */

 /***/
 /* */
 /* Call EZACIC09 to format the returned result address information */
 /* */
 /***/

 call ezacic09(RES, OPNAMELEN, OPCANON, OPNAME, OPNEXT,
 RETCODE);
 msg = blank; /* clear field */
 if retcode ^= 0 then do;
 msg = 'FAIL: EZACIC09' || RETCODE;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'OPCANON = ' || OPCANON;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute FREEADDRINFO */

206 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 /* */
 /***/
 call ezasoket(FREEADDRINFO, RES,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: freeaddrinfo' || errno;
 write file(driver) from (msg);
 end;

 end; /* end from getaddrinfo */
 /***/
 /* */
 /* Execute BIND */
 /* */
 /***/

 name6_id.port = 8888;
 call ezasoket(BIND, SOCK_STREAM, NAME6_ID,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: bind' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute GETSOCKNAME */
 /* */
 /***/

 call ezasoket(GETSOCKNAME, SOCK_STREAM,
 NAME6_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getsockname, stream, internet' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute LISTEN */
 /* */
 /***/

 backlog = 5;
 call ezasoket(LISTEN, SOCK_STREAM, BACKLOG,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: listen w/ backlog = 5' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute ACCEPT */
 /* */
 /***/

 call ezasoket(ACCEPT, SOCK_STREAM,
 NAME6_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: accept' || errno;
 write file(driver) from (msg);
 end;
 else do;
 accpsock = retcode;
 msg = 'accept socket = ' || accpsock;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute NTOP */
 /* */
 /***/
 call ezasoket(NTOP, AF_INET6, NUMERIC_ADDR,
 PRESENTABLE_ADDR, PRESENTABLE_ADDR_LEN,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: ntop' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 else do;
 msg = 'presentable address = ' || PRESENTABLE_ADDR;
 write file(driver) from (msg);

Chapter 7. CALL instruction application programming interface 207

 end; /* */

 /***/
 /* */
 /* Execute READ */
 /* */
 /***/

 nbyte = length(bufin);
 call ezasoket(READ, ACCPSOCK,
 NBYTE, BUFIN, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: read' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'read = ' || bufin;
 write file(driver) from (msg);
 bufout = bufin;
 nbyte = retcode;
 end;

 /***/
 /* */
 /* Execute WRITE */
 /* */
 /***/

 call ezasoket(WRITE, ACCPSOCK, NBYTE, BUFOUT,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: write' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'write = ' || bufout;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute CLOSE accept socket */
 /* */
 /***/

 call ezasoket(CLOSE, ACCPSOCK,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: close, accept sock' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute TERMAPI */
 /* */
 /***/

 getout:
 call ezasoket(TERMAPI);

 close file(driver);
 end EZASO6PS;

Figure 75. EZASO6PS PL/1 sample server program for IPv6

Sample program for IPv6 client program
The EZASO6PC PL/I sample program is a client program that shows you how to use the following calls
provided by the call socket interface:

• CONNECT
• GETNAMEINFO
• GETPEERNAME
• INITAPI
• PTON
• READ
• SHUTDOWN

208 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

• SOCKET
• TERMAPI
• WRITE

 /***/
 /* */
 /* MODULE NAME: EZASO6PC - THIS IS A VERY SIMPLE IPV6 CLIENT */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* (C) Copyright IBM Corp. 2002 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: CSV1R4 */
 /* */
 /***/
 EZASO6PC: PROC OPTIONS(MAIN);

 /* INCLUDE CBLOCK - common variables */
 % include CBLOCK;

 ID.TCPNAME = 'TCPCS'; /* Set TCP to use */
 ID.ADSNAME = 'EZASO6PS'; /* and address space name */
 open file(driver);

 /***/
 /* */
 /* Execute INITAPI */
 /* */
 /***/

 call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
 MAXSNO, ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = 'FAIL: initapi' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute SOCKET */
 /* */
 /***/

 call ezasoket(SOCKET, AF_INET6, TYPE_STREAM, PROTO,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: socket, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 sock_stream = retcode; /* save socket descriptor */

 /***/
 /* Execute PTON */
 /* */
 /***/
 PRESENTABLE_ADDR = IPV6_LOOPBACK; /* Set the address to use */
 PRESENTABLE_ADDR_LEN = LENGTH(PRESENTABLE_ADDR) ; /* and it's length */
 call ezasoket(PTON, AF_INET6, PRESENTABLE_ADDR,
 PRESENTABLE_ADDR_LEN, NUMERIC_ADDR,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: pton' || errno;
 write file(driver) from (msg);
 goto getout;
 end;
 msg = 'SUCCESS: pton converted ' || PRESENTABLE_ADDR;
 name6_id.address = NUMERIC_ADDR; /* IPV6 internet address */

 /***/
 /* Execute CONNECT */
 /* */
 /***/

 name6_id.port = 8888;
 call ezasoket(CONNECT, SOCK_STREAM, NAME6_ID,
 ERRNO, RETCODE);
 if retcode < 0 then do;

Chapter 7. CALL instruction application programming interface 209

 msg = blank; /* clear field */
 msg = 'FAIL: connect, stream, internet' || errno;
 write file(driver) from (msg);
 goto getout;
 end;

 /***/
 /* */
 /* Execute GETPEERNAME */
 /* */
 /***/

 call ezasoket(GETPEERNAME, SOCK_STREAM,
 NAME6_ID, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getpeername' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute GETNAMEINFO */
 /* */
 /***/

 NAMELEN = 28 ; /* Set length of NAME */
 GNI_HOST = blank; /* Clear Host name */
 GNI_HOSTLEN = LENGTH(GNI_HOST); /* Set Host name length */
 GNI_SERVICE = blank; /* Clear Service name */
 GNI_SERVLEN = LENGTH(GNI_SERVICE); /* Set Service name length */
 GNI_FLAGS = NI_NAMEREQD; /* Set an error if name is not found */
 call ezasoket(GETNAMEINFO, NAME6_ID, NAMELEN,
 GNI_HOST, GNI_HOSTLEN,
 GNI_SERVICE, GNI_SERVLEN,
 GNI_FLAGS,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: getnameinfo' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'getnameinfo host=' || GNI_HOST ;
 write file(driver) from (msg);
 msg = 'getnameinfo service=' || GNI_SERVICE ;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute WRITE */
 /* */
 /***/

 bufout = message;
 nbyte = length(message);
 call ezasoket(WRITE, SOCK_STREAM, NBYTE, BUFOUT,
 ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: write' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'write = ' || bufout;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute READ */
 /* */
 /***/

 nbyte = length(bufin);
 call ezasoket(READ, SOCK_STREAM,
 NBYTE, BUFIN, ERRNO, RETCODE);
 msg = blank; /* clear field */
 if retcode < 0 then do;
 msg = 'FAIL: read' || errno;
 write file(driver) from (msg);
 end;
 else do;
 msg = 'read = ' || bufin;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute SHUTDOWN from/to */
 /* */
 /***/

210 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 getout:
 how = 2;
 call ezasoket(SHUTDOWN, SOCK_STREAM, HOW,
 ERRNO, RETCODE);
 if retcode < 0 then do;
 msg = blank; /* clear field */
 msg = 'FAIL: shutdown' || errno;
 write file(driver) from (msg);
 end;

 /***/
 /* */
 /* Execute TERMAPI */
 /* */
 /***/

 call ezasoket(TERMAPI);

 close file(driver);
 end ezaso6pc;

Figure 76. EZASO6PC PL/1 sample client program for IPv6

Common variables used in PL/I sample programs
The CBLOCK common storage area contains the variables that are used in the PL/I programs in this
section.

 /**/
 /* */
 /* MODULE NAME: CBLOCK - SOKET COMMON VARIABLES */
 /* */
 /* Copyright: Licensed Materials - Property of IBM */
 /* */
 /* "Restricted Materials of IBM" */
 /* */
 /* 5694-A01 */
 /* */
 /* Copyright IBM Corp. 1994, 2010 */
 /* */
 /* US Government Users Restricted Rights - */
 /* Use, duplication or disclosure restricted by */
 /* GSA ADP Schedule Contract with IBM Corp. */
 /* */
 /* Part Type: Enterprise PL/1 for z/OS */
 /* */
 /* Status: CSV1R12 */
 /* */
 /* Change Activity: */
 /* Flag Reason Release Date Origin Description */
 /* ---- -------- -------- ------ -------- ------------------------ */
 /* $A1= PH34590 HIP6240 210323 tevaller: Identify internal use */
 /* only interfaces with */
 /* IFF_RESTRICTED */
 /**/
 /**/
 /* */
 /* SOKET COMMON VARIABLES */
 /* */
 /**/

 DCL ABS BUILTIN;
 DCL ADDR BUILTIN;
 DCL ACCEPT CHAR(16) INIT('ACCEPT');
 DCL ACCPSOCK FIXED BIN(15); /* temporary ACCEPT socket */
 DCL AF_INET FIXED BIN(31) INIT(2); /* internet domain */
 DCL AF_INET6 FIXED BIN(31) INIT(19); /* internet v6 domain */
 DCL AF_IUCV FIXED BIN(31) INIT(17); /* iucv domain */
 /* Mapping of GAI_HINTS/GAI_ADDRINFO FLAGS */
 DCL ai_PASSIVE BIT(32) INIT('00000001'BX);
 /* flag: getaddrinfo hints */
 DCL ai_CANONNAMEOK BIT(32) INIT('00000002'BX);
 /* flag: getaddrinfo hints */
 DCL ai_NUMERICHOST BIT(32) INIT('00000004'BX);
 /* flag: getaddrinfo hints */
 DCL ai_NUMERICSERV BIT(32) INIT('00000008'BX);
 /* flag: getaddrinfo hints */
 DCL ai_V4MAPPED BIT(32) INIT('00000010'BX);
 /* flag: getaddrinfo hints */
 DCL ai_ALL BIT(32) INIT('00000020'BX);
 /* flag: getaddrinfo hints */
 DCL ai_ADDRCONFIG BIT(32) INIT('00000040'BX);
 /* flag: getaddrinfo hints */
 DCL ai_EXTFLAGS BIT(32) INIT('00000080'BX);
 /* flag: getaddrinfo hints */
 DCL ai_ALLFLAGMASK BIT(32) INIT('FFFFFF00'BX);
 DCL ALIAS CHAR(255); /* alternate NAME */

Chapter 7. CALL instruction application programming interface 211

 DCL APITYPE FIXED BIN(15) INIT(2); /* default API type */
 DCL BACKLOG FIXED BIN(31); /* max length of pending queue*/
 DCL BADNAME CHAR(20); /* temporary name */
 DCL BIND CHAR(16) INIT('BIND');
 DCL BIND2ADDRSEL CHAR(16) INIT('BIND2ADDRSEL');
 DCL BIT BUILTIN;
 DCL BITZERO BIT(1); /* bit zero value */
 DCL BLANK255 CHAR(255) INIT(' '); /* */
 DCL BLANK CHAR(100) INIT(' '); /* */
 DCL BUF CHAR(80) INIT(' '); /* macro READ/WRITE buffer */
 DCL BUFF CHAR(15) INIT(' '); /* short buffer */
 DCL BUFFER CHAR(32767) INIT(' '); /* BUFFER */
 DCL BUFIN CHAR(32767) INIT(' '); /* Read buffer */
 DCL BUFOUT CHAR(32767) INIT(' '); /* WRITE buffer */
 DCL NCHBUFF CHAR(3200) INIT(' '); /* BUFFER */
 DCL CANONNAME_LEN FIXED BIN(31);/* getaddrinfo canonical name length*/
 DCL 1 CLIENT, /* socket addr of connection peer */
 2 DOMAIN FIXED BIN(31) INIT(2), /* domain of client (AF_INET) */
 2 NAME CHAR(8) INIT(' '), /* addr identifier for client */
 2 TASK CHAR(8) INIT(' '), /* task identifier for client */
 2 RESERVED CHAR(20) INIT(' '); /* reserved */
 DCL CLOSE CHAR(16) INIT('CLOSE');
 DCL COMMAND FIXED BIN(31) INIT(3); /* Query FNDELAY flag */
 DCL CONNECT CHAR(16) INIT('CONNECT');
 DCL COUNT FIXED BIN(31) INIT(100); /* elements in GRP_IOCTL_TABLE*/
 DCL DATA_SOCK FIXED BIN(15); /* temporary datagram socket */
 DCL DEF FIXED BIN(31) INIT(0); /* default protocol */
 DCL DONE_SENDING CHAR(1); /* ready flag */
 DCL DRIVER FILE OUTPUT UNBUF ENV(FB RECSIZE(100)) RECORD;
 DCL ERETMSK CHAR(4); /* indicate exception events */
 DCL ERR FIXED BIN(31); /* error number variable */
 DCL ERRNO FIXED BIN(31) INIT(0); /* error number */
 DCL ESNDMSK CHAR(4); /* check for pending */
 /* exception events */
 DCL EXIT LABEL; /* common exit point */
 DCL EZACIC05 ENTRY OPTIONS(ASM,INTER) EXT; /* translate ascii>ebcdic*/
 DCL EZACIC09 ENTRY OPTIONS(ASM,INTER) EXT; /* format getaddrinfo res*/
 DCL EZASOKET ENTRY OPTIONS(ASM,INTER) EXT; /* socket call */
 DCL FCNTL CHAR(16) INIT('FCNTL');
 DCL FIONBIO BIT(32) INIT('8004A77E'BX); /* flag: nonblocking */
 DCL FIONREAD BIT(32) INIT('4004A77F'BX);/* flag:#readable bytes */
 DCL FLAGS FIXED BIN(31) INIT(0); /* default: no flags */
 /* 1 = OOB, SEND OUT-OF-BAND*/
 /* 4 = DON'T ROUTE */
 DCL FREEADDRINFO CHAR(16) INIT('FREEADDRINFO');
 DCL GAI_NODE CHAR(255) INIT(' '); /* getaddrinfo node */
 DCL GAI_NODELEN FIXED BIN(31) INIT(255);/* getaddrinfo node length */
 DCL GAI_SERVICE CHAR(32) INIT(' '); /* getaddrinfo service */
 DCL GAI_SERVLEN FIXED BIN(31) INIT(32); /* getaddrinfo service */
 /* length */
 DCL 1 GAI_HINTS, /* getaddrinfo hints addrinfo */
 2 FLAGS FIXED BIN(31) INIT(0), /* hints flags, see defns */
 /* starting at ai_PASSIVE */
 2 AF FIXED BIN(31) INIT(0), /* hints family */
 2 SOCTYPE FIXED BIN(31) INIT(0), /* hints socket type */
 2 PROTO FIXED BIN(31) INIT(0), /* hints protocol */
 2 NAMELEN FIXED BIN(31) INIT(0),
 2 * CHAR(4),
 2 * CHAR(4),
 2 CANONNAME FIXED BIN(31) INIT(0),
 2 * CHAR(4),
 2 NAME FIXED BIN(31) INIT(0),
 2 * CHAR(4),
 2 NEXT FIXED BIN(31) INIT(0),
 2 EFLAGS FIXED BIN(31) INIT(0); /* see definitions after */
 /* IPV6_ADDR_PREFERENCES */
 DCL 1 GAI_ADDRINFO BASED(RES), /* getaddrinfo RES addrinfo */
 2 FLAGS FIXED BIN(31), /* see ai_PASSIVE & following defns*/
 2 AF FIXED BIN(31),
 2 SOCTYPE FIXED BIN(31),
 2 PROTO FIXED BIN(31),
 2 NAMELEN FIXED BIN(31), /* RES socket address struct length*/
 2 * CHAR(4),
 2 * CHAR(4),
 2 CANONNAME POINTER, /* RES canonical name */
 2 * CHAR(4),
 2 NAME POINTER, /* RES socket address structure */
 2 * CHAR(4),
 2 NEXT POINTER, /* RES next addrinfo, zero if none.*/
 2 EFLAGS FIXED BIN(31); /* see definitions that follow the */
 /* IPV6_ADDR_PREFERENCES definition*/
 DCL 1 GAI_NAME_ID BASED(GAI_ADDRINFO.NAME),
 2 LEN BIT(8),
 2 FAMILY BIT(8),
 2 PORT BIT(16),
 2 ADDRESS BIT(32),
 2 RESERVED1 CHAR(8);
 DCL 1 GAI_NAME6_ID BASED(GAI_ADDRINFO.NAME),
 2 LEN BIT(8),
 2 FAMILY BIT(8),
 2 PORT BIT(16),
 2 FLOWINFO FIXED BIN(31),
 2 ADDRESS CHAR(16),

212 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 2 SCOPEID FIXED BIN(31);
 DCL GETADDRINFO CHAR(16) INIT('GETADDRINFO');
 DCL GETCLIENTID CHAR(16) INIT('GETCLIENTID');
 DCL GETHOSTBYADDR CHAR(16) INIT('GETHOSTBYADDR');
 DCL GETHOSTBYNAME CHAR(16) INIT('GETHOSTBYNAME');
 DCL GETHOSTNAME CHAR(16) INIT('GETHOSTNAME');
 DCL GETHOSTID CHAR(16) INIT('GETHOSTID');
 DCL GETIBMOPT CHAR(16) INIT('GETIBMOPT');
 DCL GETNAMEINFO CHAR(16) INIT('GETNAMEINFO');
 DCL GETPEERNAME CHAR(16) INIT('GETPEERNAME');
 DCL GETSOCKNAME CHAR(16) INIT('GETSOCKNAME');
 DCL GETSOCKOPT CHAR(16) INIT('GETSOCKOPT');
 DCL GIVESOCKET CHAR(16) INIT('GIVESOCKET');
 DCL GLOBAL CHAR(16) INIT('GLOBAL');
 DCL GNI_FLAGS FIXED BIN(31); /* getnameinfo flags */
 DCL GNI_HOST CHAR(255); /* getnameinfo host */
 DCL GNI_HOSTLEN FIXED BIN(31); /* getnameinfo host length */
 DCL GNI_SERVICE CHAR(32); /* getnameinfo service */
 DCL GNI_SERVLEN FIXED BIN(31); /* getnameinfo service length */
 DCL 1 GROUP_FILTER4 BASED, /* Group_Filter for IPv4 */
 2 GF4_HEADER, /* Header portion */
 3 GF4_INTERFACE FIXED BIN(31), /* Interface index */
 3 * CHAR(4), /* Padding */
 3 GF4_GROUP, /* Group Multi Address */
 4 GF4_SOCK_LEN BIT(8), /* Socket len */
 4 GF4_SOCK_FAMILY BIT(8), /* Socket family */
 4 GF4_SOCK_SIN_PORT BIT(16), /* Socket port */
 4 GF4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 4 GF4_RESERVED1 CHAR(8), /* Unused */
 4 * CHAR(112), /* */
 3 GF4_FMODE FIXED BIN(31), /* Filter mode */
 3 GF4_NUMSRC FIXED BIN(31), /* Num of sources */
 2 GF4_SLIST CHAR(0); /* Source list */
 DCL 1 GF4_SRCENTRY BASED, /* Source Entry */
 2 GF4_SRCADDR, /* Source IP address */
 3 GF4_SOCK_LEN BIT(8), /* Socket len */
 3 GF4_SOCK_FAMILY BIT(8), /* Socket family */
 3 GF4_SOCK_SIN_PORT BIT(16), /* Socket port */
 3 GF4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 3 GF4_RESERVED1 CHAR(8), /* Unused */
 3 * CHAR(112); /* */

 DCL 1 GROUP_FILTER6 BASED, /* Group_Filter for IPv6 */
 2 GF6_HEADER, /* Header portion */
 3 GF6_INTERFACE FIXED BIN(31), /* Interface index */
 3 * CHAR(4), /* Padding */
 3 GF6_GROUP, /* Group Multi Address */
 4 GF6_SOCK_LEN BIT(8), /* Socket len */
 4 GF6_SOCK_FAMILY BIT(8), /* Socket family */
 4 GF6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 4 GF6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 4 GF6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 4 GF6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 4 * CHAR(100), /* */
 3 GF6_FMODE FIXED BIN(31), /* Filter mode */
 3 GF6_NUMSRC FIXED BIN(31), /* Num of sources */
 2 GF6_SLIST CHAR(0); /* Source list */
 DCL 1 GF6_SRCENTRY BASED, /* Source Entry */
 2 GF6_SRCADDR, /* Source IP address */
 3 GF6_SOCK_LEN BIT(8), /* Socket len */
 3 GF6_SOCK_FAMILY BIT(8), /* Socket family */
 3 GF6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 3 GF6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 3 GF6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 3 GF6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 3 * CHAR(100); /* */
 DCL 1 GROUP_REQ4 BASED, /* Group_Req for IPv4 */
 2 GR4_INTERFACE FIXED BIN(31), /* Interface index */
 2 * CHAR(4), /* Padding */
 2 GR4_SOCK_LEN BIT(8), /* Socket len */
 2 GR4_SOCK_FAMILY BIT(8), /* Socket family */
 2 GR4_SOCK_SIN_PORT BIT(16), /* Socket port */
 2 GR4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 2 GR4_RESERVED1 CHAR(8), /* Unused */
 2 * CHAR(112); /* */
 DCL 1 GROUP_REQ6 BASED, /* Group_Req for IPv6 */
 2 GR6_INTERFACE FIXED BIN(31), /* Interface index */
 2 * CHAR(4), /* Padding */
 2 GR6_SOCK_LEN BIT(8), /* Socket len */
 2 GR6_SOCK_FAMILY BIT(8), /* Socket family */
 2 GR6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 2 GR6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 2 GR6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 2 GR6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 2 * CHAR(100); /* */
 DCL 1 GROUP_SOURCE_REQ4 BASED, /* Group_Source_Req for IPv4 */
 2 GSR4_INTERFACE FIXED BIN(31), /* Interface index */
 2 * CHAR(4), /* Padding */
 2 GSR4_GROUP, /* Multicast group addr */
 3 GSR4_SOCK_LEN BIT(8), /* Socket len */
 3 GSR4_SOCK_FAMILY BIT(8), /* Socket family */
 3 GSR4_SOCK_SIN_PORT BIT(16), /* Socket port */
 3 GSR4_SOCK_SIN_ADDR BIT(32), /* Socket address */

Chapter 7. CALL instruction application programming interface 213

 3 GSR4_RESERVED1 CHAR(8), /* Unused */
 3 * CHAR(112), /* */
 2 GSR4_SOURCE, /* Source IP address */
 3 GSR4_SOCK_LEN BIT(8), /* Socket len */
 3 GSR4_SOCK_FAMILY BIT(8), /* Socket family */
 3 GSR4_SOCK_SIN_PORT BIT(16), /* Socket port */
 3 GSR4_SOCK_SIN_ADDR BIT(32), /* Socket address */
 3 GSR4_RESERVED1 CHAR(8), /* Unused */
 3 * CHAR(112); /* */
 DCL 1 GROUP_SOURCE_REQ6 BASED, /* Group_Source_Req for IPv6 */
 2 GSR6_INTERFACE FIXED BIN(31), /* Interface index */
 2 * CHAR(4), /* Padding */
 2 GSR6_GROUP, /* Multicast group addr */
 3 GSR6_SOCK_LEN BIT(8), /* Socket len */
 3 GSR6_SOCK_FAMILY BIT(8), /* Socket family */
 3 GSR6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 3 GSR6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 3 GSR6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 3 GSR6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 3 * CHAR(100), /* */
 2 GSR6_SOURCE, /* Source IP address */
 3 GSR6_SOCK_LEN BIT(8), /* Socket len */
 3 GSR6_SOCK_FAMILY BIT(8), /* Socket family */
 3 GSR6_SOCK_SIN6_PORT BIT(16), /* Socket port */
 3 GSR6_SOCK_SIN6_FLOWINFO FIXED BIN(31), /* flow info */
 3 GSR6_SOCK_SIN6_ADDRESS CHAR(16), /* Socket address */
 3 GSR6_SOCK_SIN6_SCOPEID FIXED BIN(31), /* Socket scopeid */
 3 * CHAR(100); /* */
 DCL HINTS POINTER; /*getaddrinfo hints addrinfo pointer*/
 DCL 1 HOMEIF, /* Home Interface Structure */
 2 ADDRESS CHAR(16); /* Home Interface Address */
 DCL HOSTADDR BIT(32); /* host internet address */
 DCL HOSTNAME CHAR(24); /* host name from GETHOSTNAME */
 DCL HOSTNAME_LEN FIXED BIN(31) INIT(24);
 /* host name length GETHOSTNAME */
 DCL HOW FIXED BIN(31) INIT(2); /* how shutdown is to be done */
 Dcl 1 HOSTENT Based, /* Host entry */
 3 H_NAME POINTER, /* Official name of host */
 3 H_ALIASES POINTER, /* Alias list address */
 3 H_ADDRTYPE BIT(32), /* Host address type */
 3 H_LENGTH FIXED BIN(31), /* Length of address */
 3 H_ADDR_LIST POINTER; /* List of addresses from */
 /* name server */
 DCL I FIXED BIN(15); /* loop index */
 DCL ICMP FIXED BIN(31) INIT(2); /* prototype icmp ??? */
 DCL 1 ID, /* */
 2 TCPNAME CHAR(8) INIT('TCPIP'), /* remote address space */
 2 ADSNAME CHAR(8) INIT('USER9'); /* local address space */
 DCL IDENT POINTER; /* TCP/IP Addr Space */
 DCL IFCONF CHAR(255); /* configuration structure */
 DCL 1 IF_NAMEINDEX,
 2 IF_NIHEADER,
 3 IF_NITOTALIF FIXED BIN(31), /*Total Active Interfaces on Sys. */
 3 IF_NIENTRIES FIXED BIN(31), /* Number of entries returned */
 2 IF_NITABLE(10) CHAR(24);
 DCL 1 IF_NAMEINDEXENTRY,
 2 IF_NIINDEX FIXED BIN(31), /* Interface Index */
 2 IF_NINAME CHAR(16), /* Interface Name, blank padded */
 2 IF_NIEXT,
 3 IF_NINAMETERM CHAR(1), /* Null for C for Name len=16 */
 3 IF_RESERVED CHAR(3); /* Reserved */
 DCL 1 IFREQ, /* Interface Structure */
 2 IFR_NAME CHAR(16), /* Interface Name, blank padded */
 2 IFR_IFR UNION,
 3 IFR_ADDR, /* Interface IP Address */
 4 IFR_ADDR_LEN BIT(8), /* Socket Len */
 4 IFR_ADDR_FAMILY BIT(8), /* Socket Family */
 4 IFR_ADDR_PORT BIT(16), /* Socket Port */
 4 IFR_ADDR_ADDR BIT(32), /* Socket Address */
 4 IFR_ADDR_RSVD CHAR(8), /* Socket Reserved */
 3 IFR_DSTADDR, /* Interface Dest IP Addr */
 4 IFR_DSTADDR_LEN BIT(8), /* Socket Len */
 4 IFR_DSTADDR_FAMILY BIT(8), /* Socket Family */
 4 IFR_DSTADDR_PORT BIT(16), /* Socket Port */
 4 IFR_DSTADDR_ADDR BIT(32), /* Socket Address */
 4 IFR_DSTADDR_RSVD CHAR(8), /* Socket Reserved */
 3 IFR_BROADADDR, /* Interface Broadcast IP Addr*/
 4 IFR_BROADADDR_LEN BIT(8), /* Socket Len */
 4 IFR_BROADADDR_FAMILY BIT(8), /* Socket Family */
 4 IFR_BROADADDR_PORT BIT(16), /* Socket Port */
 4 IFR_BROADADDR_ADDR BIT(32), /* Socket Address */
 4 IFR_BROADADDR_RSVD CHAR(8), /* Socket Reserved */
 3 IFR_FLAGS BIT(16), /* Interface Flags */
 3 IFR_METRIC FIXED BIN(31), /* Interface Metric */
 3 IFR_DATA FIXED BIN(31), /* Interface Data */
 3 IFR_MTU FIXED BIN(31); /* Interface MTU */

 /* The following constants are for use with the IFR_FLAGS field */
 /* in structure IFREQ. */
 DCL IFF_UP BIT(16) INIT('0001'BX); /* interface is UP */
 DCL IFF_BROADCAST BIT(16) INIT('0002'BX); /* broadcast addr valid */
 DCL IFF_DEBUG BIT(16) INIT('0004'BX); /* turn on debugging */
 DCL IFF_RESTRICTED BIT(16) INIT('0004'BX); /* overload debug for

214 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 restricted interfaces
 since we don't allow
 debugging @A1A*/
 DCL IFF_LOOPBACK BIT(16) INIT('0008'BX); /* software loopback */
 DCL IFF_POINTOPOINT BIT(16) INIT('0010'BX); /* point-to-point link */
 DCL IFF_NOTRAILERS BIT(16) INIT('0020'BX); /* avoid use trailers */
 DCL IFF_RUNNING BIT(16) INIT('0040'BX); /* resources allocated */
 DCL IFF_NOARP BIT(16) INIT('0080'BX); /* no ARP */
 DCL IFF_PROMISC BIT(16) INIT('0100'BX); /* receive all packets */
 DCL IFF_ALLMULTI BIT(16) INIT('0200'BX); /* multicast packets */
 DCL IFF_MULTICAST BIT(16) INIT('0400'BX); /* multicast capable */
 DCL IFF_POINTOMULTIPT BIT(16) INIT('0800'BX);/* pt-to-multipt */
 DCL IFF_BRIDGE BIT(16) INIT('1000'BX); /* support token ring */
 DCL IFF_SNAP BIT(16) INIT('2000'BX); /* support extended SAP */
 DCL IFF_VIRTUAL BIT(16) INIT('4000'BX); /* virtual interface */
 DCL IFF_SAMEHOST BIT(16) INIT('8000'BX); /* Samehost */

 DCL INDEX BUILTIN;
 DCL IOCTL CHAR(16) INIT('IOCTL');
 DCL IOCTL_CMD FIXED BIN(31); /* ioctl command */
 DCL IOCTL_REQARG POINTER ; /* send pointer to data area*/
 DCL IOCTL_RETARG POINTER ; /* return pointer to data area*/
 DCL IOCTL_REQ00 FIXED BIN(31); /* command request argument */
 DCL IOCTL_REQ04 FIXED BIN(31); /* command request argument */
 DCL IOCTL_REQ08 FIXED BIN(31); /* command request argument */
 DCL IOCTL_REQ32 CHAR(32) INIT(' '); /* command request argument */
 DCL IOCTL_RET00 FIXED BIN(31); /* command return argument */
 DCL IOCTL_RET04 FIXED BIN(31); /* command return argument */
 DCL INET6_IS_SRCADDR CHAR(16) INIT('INET6_IS_SRCADDR');
 DCL INITAPI CHAR(16) INIT('INITAPI'); /* */
 DCL IP FIXED BIN(31) INIT(1); /* prototype ip ??? */
 DCL 1 IP_MREQ,
 2 IMR_MULTIADDR BIT(32), /* IP multicast addr of group */
 2 IMR_INTERFACE BIT(32); /* local IP addr of interface */
 DCL 1 IPV6_MREQ,
 2 IPV6MR_MULTIADDR CHAR(16),
 2 IPV6MR_INTERFACE FIXED BIN(31);
 DCL 1 IP_MREQ_SOURCE BASED, /* Multi source API structure */
 2 IMRS_MULTIADDR BIT(32), /* IP multicast addr of grp */
 2 IMRS_SOURCEADDR BIT(32), /* IP source addr */
 2 IMRS_INTERFACE BIT(32); /* local IP addr of intf */
 DCL 1 IP_MSFILTER BASED, /* IP_MsFilter */
 2 IMSF_HEADER, /* Header portion */
 3 IMSF_MULTIADDR BIT(32), /* Multicast address */
 3 IMSF_INTERFACE BIT(32), /* Interface address */
 3 IMSF_FMODE FIXED BIN(31), /* Filter mode */
 3 IMSF_NUMSRC FIXED BIN(31), /* Num of sources */
 2 IMSF_SLIST CHAR(0); /* Source list */
 DCL 1 IMSF_SRCENTRY BASED, /* Source Entry */
 2 IMSF_SRCADDR BIT(32); /* Source IP address */
 DCL IP_MULTICAST_TTL BIT(32) INIT('00100003'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_MULTICAST_LOOP BIT(32) INIT('00100004'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_MULTICAST_IF BIT(32) INIT('00100007'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_ADD_MEMBERSHIP BIT(32) INIT('00100005'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_DROP_MEMBERSHIP BIT(32) INIT('00100006'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_BLOCK_SOURCE BIT(32) INIT('0010000A'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_UNBLOCK_SOURCE BIT(32) INIT('0010000B'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_ADD_SOURCE_MEMBERSHIP BIT(32) INIT('0010000C'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IP_DROP_SOURCE_MEMBERSHIP BIT(32) INIT('0010000D'BX);
 DCL IPRES POINTER; /* EZACIC09 RES addrinfo ptr */
 DCL IPV6_ADDR_PREFERENCES BIT(32) INIT('00010020'BX);
 /* getsockopt/setsockopt OPTNAME */
 /**/
 /* Mapping of GAI_HINTS/GAI_ADDRINFO EFLAGS flags and */
 /* IPV6_ADDR_PREFERENCES getsockopt, setsockopt OPTVAL flags, and */
 /* inet6_is_srcaddr flags */
 /**/
 /* Prefer home IPv6 address over care-of IPv6 address */
 DCL IPV6_PREFER_SRC_HOME BIT(32) INIT('00000001'BX);
 /* Prefer care-of IPv6 address over home IPv6 address */
 DCL IPV6_PREFER_SRC_COA BIT(32) INIT('00000002'BX);
 /* Prefer temporary IPv6 address over public IPv6 address */
 DCL IPV6_PREFER_SRC_TMP BIT(32) INIT('00000004'BX);
 /* Prefer public IPv6 address over temporary IPv6 address */
 DCL IPV6_PREFER_SRC_PUBLIC BIT(32) INIT('00000008'BX);
 /* Prefer cryptographic address over non-cryptographic address */
 DCL IPV6_PREFER_SRC_CGA BIT(32) INIT('00000010'BX);
 /* Prefer non-cryptographic address over cryptographic address */
 DCL IPV6_PREFER_SRC_NONCGA BIT(32) INIT('00000020'BX);
 /* Invalid EFLAGS or IPV6_ADDR_PREFERENCES OPTVAL flags */
 DCL IPV6_PREFERENCES_FLAGS_MASKINVALID BIT(32) INIT('FFFFFFC0'BX);
 /**/
 DCL IPV6_JOIN_GROUP BIT(32) INIT('00010005'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_LEAVE_GROUP BIT(32) INIT('00010006'BX);

Chapter 7. CALL instruction application programming interface 215

 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_LOOPBACK CHAR(3) INIT('::1');
 DCL IPV6_MULTICAST_HOPS BIT(32) INIT('00010009'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_MULTICAST_IF BIT(32) INIT('00010007'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_MULTICAST_LOOP BIT(32) INIT('00010004'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_UNICAST_HOPS BIT(32) INIT('00010003'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL IPV6_V6ONLY BIT(32) INIT('0001000A'BX);
 DCL J FIXED BIN(15); /* loop index */
 DCL K FIXED BIN(15); /* loop index */
 DCL LENGTH BUILTIN;
 DCL LABL CHAR(9);
 DCL LISTEN CHAR(16) INIT('LISTEN');
 DCL MAXSNO FIXED BIN(31) INIT(0); /* max descriptor assigned */
 DCL 1 MAXSOC_INPUT FIXED BIN(31) INIT(0);
 DCL 1 MAXSOC_FWD,
 2 MAXSOC_IGNORE FIXED BIN(15) INIT(0),
 2 MAXSOC FIXED BIN(15) INIT(255); /* largest sock # checked */
 DCL MCAST_JOIN_GROUP BIT(32) INIT('00100028'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_LEAVE_GROUP BIT(32) INIT('00100029'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_JOIN_SOURCE_GROUP BIT(32) INIT('0010002A'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_LEAVE_SOURCE_GROUP BIT(32) INIT('0010002B'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_BLOCK_SOURCE BIT(32) INIT('0010002C'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_UNBLOCK_SOURCE BIT(32) INIT('0010002D'BX);
 /* getsockopt/setsockopt OPTNAME */
 DCL MCAST_EXCLUDE BIT(32) INIT('00000001'BX);
 DCl MCAST_INCLUDE BIT(32) INIT('00000000'BX);
 DCl MCAST_NUMSRC_MAX BIT(32)INIT('00000040'BX);
 DCL MESSAGE CHAR(50) INIT('I love my 1 @ Rottweiler!'); /* message */
 DCL MSG CHAR(100) INIT(' '); /* message text */
 DCL 1 NAME_ID, /* socket addr of connection peer */
 2 FAMILY FIXED BIN(15) INIT(2), /*addr'g family TCP/IP def */
 2 PORT BIT(16), /* system assigned port # */
 2 ADDRESS BIT(32), /* 32-bit internet */
 2 RESERVED CHAR(8); /* reserved */
 DCL 1 NAME6_ID, /* socket addr of connection peer */
 2 FAMILY FIXED BIN(15) INIT(19), /* NAMELN IGNORED & FAMILY */
 2 PORT BIT(16), /* port # */
 2 FLOWINFO FIXED BIN(31), /* Flow info */
 2 ADDRESS CHAR(16), /* IPv6 internet address */
 2 SCOPEID FIXED BIN(31); /* Scope ID */

 DCL NAMEL CHAR(255) VARYING; /* name field, long */
 DCL NAMES CHAR(24); /* name field, short */
 DCL NAMELEN FIXED BIN(31); /* length of name/alias field */
 DCL NBYTE FIXED BIN(31); /* Number of bytes in buffer */
 DCL 1 NETCONFHDR, /* Network Configuration Hdr */
 2 NCHEYECATCHER CHAR(4) INIT('6NCH'), /* Eye Catcher '6NCH' */
 2 NCHIOCTL BIT(32) INIT('C014F608'BX),
 /* The IOCTL being processed */
 /* with this instance of the */
 /* NetConfHdr. (RAS item) */
 2 NCHBUFFERLENGTH FIXED BIN(31) INIT(3200), /* Buffer Length */
 2 NCHBUFFERPTR POINTER, /* Buffer Pointer */
 2 NCHNUMENTRYRET FIXED BIN(31); /* Number of HomeIF returned via */
 /* SIOCGHOMEIF6 or the number of*/
 /* GRT6RtEntry's returned via */
 /* SIOCGRT6TABLE. */
 DCL NI_NOFQDN FIXED BIN(31) INIT(1);
 /* flag: getnameinfo */
 DCL NI_NUMERICHOST FIXED BIN(31) INIT(2);
 /* flag: getnameinfo */
 DCL NI_NAMEREQD FIXED BIN(31) INIT(4);
 /* flag: getnameinfo */
 DCL NI_NUMERICSERV FIXED BIN(31) INIT(8);
 /* flag: getnameinfo */
 DCL NI_DGRAM FIXED BIN(31) INIT(16);
 /* flag: getnameinfo */
 DCL NI_NUMERICSCOPE FIXED BIN(31) INIT(32);
 /* flag: getnameinfo */
 DCL NOTE(3) CHAR(25) INIT('Now is the time for 198 g',
 'ood people to come to the',
 ' aid of their parties!');
 DCL NS FIXED BIN(15); /* socket descriptor, new */
 DCL NTOP CHAR(16) INIT('NTOP'); /* Numeric to Presentation */
 DCL NULL BUILTIN;
 DCL 1 NUMERIC_ADDR CHAR(16); /* NTOP/PTON Numeric address */
 DCL OPNAMELEN FIXED BIN(31); /* Socket address structure length */
 DCL OPCANON CHAR(256); /* Canonical name */
 DCL OPNAME POINTER; /* Socket address structure */
 DCL OPNEXT POINTER; /* Next result address info in chain */
 DCL OPTL FIXED BIN(31); /* length of OPTVAL string */
 DCL OPTLEN FIXED BIN(31); /* length of OPTVAL string */
 DCL OPTN CHAR(15); /* OPTNAME value (macro) */
 DCL OPTNAME FIXED BIN(31); /* OPTNAME value (call) */

216 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 DCL OPTVAL CHAR(255); /* GETSOCKOPT option data */
 DCL OPTVALD FIXED BIN(31); /* SETSOCKOPT option data */
 DCL 1 OPT_STRUC, /* structure for option */
 2 ON_OFF FIXED BIN(31) INIT(1), /* enable option */
 2 TIME FIXED BIN(31) INIT(5); /* time-out in seconds */
 DCL 1 OPT_STRUCT, /* structure for option */
 2 ON FIXED BIN(31), /* used for getsockopt */
 2 TIMEOUT FIXED BIN(31); /* time-out in seconds */
 DCL PLITEST BUILTIN; /* debug tool */
 DCL PRESENTABLE_ADDR CHAR(45); /* NTOP/PTON presentable address */
 DCL PRESENTABLE_ADDR_LEN FIXED BIN(15);
 /* NTOP/PTON presentable address length*/
 DCL PROTO FIXED BIN(31) INIT(0); /* prototype default */
 DCL PTON CHAR(16) INIT('PTON'); /* Presentation to numeric */
 DCL READ CHAR(16) INIT('READ');
 DCL READV CHAR(16) INIT('READV');
 DCL RECV CHAR(16) INIT('RECV');
 DCL RECVFROM CHAR(16) INIT('RECVFROM');
 DCL RECVMSG CHAR(16) INIT('RECVMSG');
 DCL REUSE FIXED BIN(31) INIT('4'); /* toggle, reuse local addr */
 DCL REQARG FIXED BIN(31); /* command request argument */
 DCL RES POINTER; /* getaddrinfo RES addrinfo ptr */
 DCL RETC FIXED BIN(31); /* return code variable */
 DCL RETARG CHAR(255); /* return argument data area */
 DCL RETCODE FIXED BIN(31) INIT(0); /* return code */
 DCL RETLEN FIXED BIN(31); /* return area data length */
 DCL RRETMSK CHAR(4); /* indicate READ EVENTS */
 DCL RSNDMSK CHAR(4); /* check for pending read events */
 DCL RTENTRY CHAR(50) INIT('dummy table'); /* router entry */
 DCL SAVEFAM FIXED BIN(15); /* temporary family name */
 DCL SELECB CHAR(4) INIT('1');
 DCL SELECT CHAR(16) INIT('SELECT');
 DCL SELECTEX CHAR(16) INIT('SELECTEX');
 DCL SEND CHAR(16) INIT('SEND');
 DCL SENDMSG CHAR(16) INIT('SENDMSG');
 DCL SENDTO CHAR(16) INIT('SENDTO');
 DCL SETADEYE1 CHAR(8) INIT('SETAPPLD');
 DCL SETADVER FIXED BIN(15) INIT(1);
 DCL SETADCONTLEN FIXED BIN(15) INIT(48);
 DCL SETADBUFLEN FIXED BIN(15) INIT(40);
 DCL 1 SETAPPLDATA,
 2 SETAD_EYE1 CHAR(8),
 2 SETAD_VER FIXED BIN(15),
 2 SETAD_LEN FIXED BIN(15),
 2 * CHAR(4),
 2 SETAD_PTR64 ,
 3 SETAD_PTRHW CHAR(4),
 3 SETAD_PTR POINTER;
 DCL SETADEYE2 CHAR(8) INIT('APPLDATA');
 DCL 1 SETADCONTAINER,
 2 SETAD_EYE2 CHAR(8),
 2 SETAD_BUFFER CHAR(40);
 DCL SETSOCKOPT CHAR(16) INIT('SETSOCKOPT');
 DCL SHUTDOWN CHAR(16) INIT('SHUTDOWN');
 DCL SIOCADDRT BIT(32) INIT('8030A70A'BX); /* flag: add routing entry*/
 DCL SIOCATMARK BIT(32) INIT('4004A707'BX); /* flag: out-of-band data*/
 DCL SIOCDELRT BIT(32) INIT('8030A70B'BX); /* flag: delete routing */
 DCL SIOCGIFADDR BIT(32) INIT('C020A70D'BX); /*flag: network int addr*/
 DCL SIOCGHOMEIF6 BIT(32) INIT('C014F608'BX); /* flag netw int config*/
 DCL SIOCGIFBRDADDR BIT(32) INIT('C020A712'BX); /* flag net broadcast*/
 DCL SIOCGIFCONF BIT(32) INIT('C008A714'BX); /* flag: netw int config*/
 DCL SIOCGIFDSTADDR BIT(32) INIT('C020A70F'BX); /* flag: net des addr*/
 DCL SIOCGIFFLAGS BIT(32) INIT('C020A711'BX); /* flag: net intf flags*/
 DCL SIOCGIFMETRIC BIT(32) INIT('C020A717'BX); /* flag: get rout metr*/
 DCL SIOCGIFMTU BIT(32) INIT('C020A726'BX); /* flag: get intf mtu */
 DCL SIOCGIFNAMEINDEX BIT(32) INIT('4000F603'BX);
 /* flag: name and indexes */
 DCL SIOCGIFNETMASK BIT(32) INIT('C020A715'BX); /* flag: network mask*/
 DCL SIOCGIFNONSENSE BIT(32) INIT('B669FD2E'BX); /* flag: nonsense */
 DCL SIOCSIFMETRIC BIT(32) INIT('8020A718'BX); /* flag: set rout metr*/
 DCL SIOCSAPPLDATA BIT(32) INIT('8018D90C'BX); /* Set APPLDATA */
 DCL SIOCGIPMSFILTER BIT(32) INIT('C000A724'BX);
 /* flag: get multicast src filter */
 DCL SIOCSIPMSFILTER BIT(32) INIT('8000A725'BX);
 /* flag: set multicast src filter */
 DCL SIOCGMSFILTER BIT(32) INIT('C000F610'BX);
 /* flag: get multicast src filter */
 DCL SIOCSMSFILTER BIT(32) INIT('8000F611'BX);
 /* flag: set multicast src filter */
 /* The following constant is defined in EZBZTLS1, but is also */
 /* included here for completeness. */
 /* DCL SIOCTTLSCTL BIT(32) INIT('C038D90B'BX) */
 /* flag: ttls */
 /* The following constants are defined in EZBPINF1, but is also */
 /* included here for completeness. */
 /* DCL SIOCSPARTNERINFO BIT(32) INIT('8004F613'BX); */
 /* DCL SIOCGPARTNERINFO BIT(32) INIT('C000F612'BX); */
 /* flag: PartnerInfo */
 DCL SOCK FIXED BIN(15); /* socket descriptor */
 DCL SOCKET CHAR(16) INIT('SOCKET');
 DCL SOCK_DATAGRAM FIXED BIN(15); /* socket descriptor datagram */
 DCL SOCK_RAW FIXED BIN(15); /* socket descriptor raw */
 DCL SOCK_STREAM FIXED BIN(15); /* stream socket descriptor */

Chapter 7. CALL instruction application programming interface 217

 DCL SOCK_STREAM_1 FIXED BIN(15); /* stream socket descriptor */
 DCL SO_BROADCAST FIXED BIN(31) INIT(32); /* toggle, broadcast msg */
 DCL SO_ERROR FIXED BIN(31) INIT(4103); /* check/clear async error */
 DCL SO_KEEPALIVE FIXED BIN(31) INIT(8); /* request status of stream*/
 DCL SO_LINGER FIXED BIN(31) INIT(128); /* toggle, linger on close */
 DCL SO_OOBINLINE FIXED BIN(31) INIT(256);/*toggle, out-of-bound data*/
 DCL SO_RCVTIMEO BIT(32) INIT('00001006'BX);
 DCL SO_REUSEADDR FIXED
 BIN(31) INIT(4); /* toggle, local address reuse*/
 DCL SO_SNDBUF FIXED BIN(31) INIT(4097);
 DCL SO_SNDTIMEO BIT(32) INIT('00001005'BX);
 DCL SO_TYPE FIXED BIN(31) INIT(4104); /* return type of socket */
 DCL STRING BUILTIN;
 DCL SUBSTR BUILTIN;
 DCL SUBTASK CHAR(8) INIT('ANYNAME'); /* task/path identifier */
 DCL SYNC CHAR(16) INIT('SYNC');
 DCL TAKESOCKET CHAR(16) INIT('TAKESOCKET');
 DCL TASK CHAR(16) INIT('TASK');
 DCL TERMAPI CHAR(16) INIT('TERMAPI'); /* */
 DCL TIME BUILTIN;
 DCL 1 TIMEOUT,
 2 TIME_SEC FIXED BIN(31), /* value in secs */
 2 TIME_MSEC FIXED BIN(31); /* value in millisecs */
 DCL 1 TIMEVAL,
 2 TV_SEC BIT(32), /* value in secs */
 2 TV_USEC BIT(32); /* value in microseconds */
 DCL TYPE_DATAGRAM FIXED BIN(31) INIT(2);/*fixed lengthconnectionless*/
 DCL TYPE_RAW FIXED BIN(31) INIT(3); /* internal protocol interface */
 DCL TYPE_STREAM FIXED BIN(31) INIT(1); /* two-way byte stream */
 DCL WRETMSK CHAR(4); /* indicate WRITE EVENTS */
 DCL WRITE CHAR(16) INIT('WRITE');
 DCL WRITEV CHAR(16) INIT('WRITEV');
 DCL WSNDMSK CHAR(4); /*check for pending write events */
 DCL TCP_KEEPALIVE BIT(32) INIT('80000008'BX);
 DCL TCP_NODELAY BIT(32) INIT('80000001'BX);

Figure 77. CBLOCK PL/1 common variables

Common variables used in COBOL sample programs
The EZACOBOL common storage area contains the variables that are used in the COBOL programs in this
section.

 * *
 * MODULE NAME: EZACOBOL - COBOL COMMON VARIABLES *
 * *
 * Copyright: Licensed Materials - Property of IBM *
 * *
 * "Restricted Materials of IBM" *
 * *
 * 5694-A01 *
 * *
 * Copyright IBM Corp. 2007, 2010 *
 * *
 * US Government Users Restricted Rights - *
 * Use, duplication or disclosure restricted by *
 * GSA ADP Schedule Contract with IBM Corp. *
 * *
 * Note: COBOL variable names can contain a maximum of *
 * 30 characters. *
 * *
 * Status: CSV1R12 *
 * *
 * Change Activity: *
 * Flag Reason Release Date Origin Description *
 * ---- -------- -------- ------ -------- --------------------- *
 * $A1= PH34590 HIP6240 210323 tevaller: Identify internal use *
 * only interfaces with *
 * IFF_RESTRICTED *

 * *
 * COBOL COMMON VARIABLES *
 * *

 *
 * Socket option values.
 *
 01 IP-ADD-MEMBERSHIP PIC X(4) VALUE X'00100005'.
 01 IP-ADD-SOURCE-MEMBERSHIP PIC X(4) VALUE X'0010000C'.
 01 IP-BLOCK-SOURCE PIC X(4) VALUE X'0010000A'.
 01 IP-DROP-MEMBERSHIP PIC X(4) VALUE X'00100006'.
 01 IP-DROP-SOURCE-MEMBERSHIP PIC X(4) VALUE X'0010000D'.
 01 IP-MULTICAST-IF PIC X(4) VALUE X'00100007'.
 01 IP-MULTICAST-LOOP PIC X(4) VALUE X'00100004'.
 01 IP-MULTICAST-TTL PIC X(4) VALUE X'00100003'.

218 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 01 IP-UNBLOCK-SOURCE PIC X(4) VALUE X'0010000B'.
 01 IPV6-ADDR-PREFERENCES PIC X(4) VALUE X'00010020'.
 01 IPV6-JOIN-GROUP PIC X(4) VALUE X'00010005'.
 01 IPV6-LEAVE-GROUP PIC X(4) VALUE X'00010006'.
 01 IPV6-MULTICAST-HOPS PIC X(4) VALUE X'00010009'.
 01 IPV6-MULTICAST-IF PIC X(4) VALUE X'00010007'.
 01 IPV6-MULTICAST-LOOP PIC X(4) VALUE X'00010004'.
 01 IPV6-UNICAST-HOPS PIC X(4) VALUE X'00010003'.
 01 IPV6-V6ONLY PIC X(4) VALUE X'0001000A'.
 01 MCAST-BLOCK-SOURCE PIC X(4) VALUE X'0010002C'.
 01 MCAST-JOIN-GROUP PIC X(4) VALUE X'00100028'.
 01 MCAST-JOIN-SOURCE-GROUP PIC X(4) VALUE X'0010002A'.
 01 MCAST-LEAVE-GROUP PIC X(4) VALUE X'00100029'.
 01 MCAST-LEAVE-SOURCE-GROUP PIC X(4) VALUE X'0010002B'.
 01 MCAST-UNBLOCK-SOURCE PIC X(4) VALUE X'0010002D'.
 01 SO-RCVTIMEO PIC X(4) VALUE X'00001006'.
 01 SO-SNDTIMEO PIC X(4) VALUE X'00001005'.
 *
 * IOCTL Commands
 *
 01 SIOCGIFMTU PIC X(4) VALUE X'C020A726'.
 01 SIOCGIPMSFILTER PIC X(4) VALUE X'C000A724'.
 01 SIOCSIPMSFILTER PIC X(4) VALUE X'8000A725'.
 01 SIOCGMSFILTER PIC X(4) VALUE X'C000F610'.
 01 SIOCSMSFILTER PIC X(4) VALUE X'8000F611'.
 01 SIOCSAPPLDATA PIC X(4) VALUE X'8018D90C'.
 *
 * Structure allows applications to allocate space for
 * either form of inet socket address
 *
 01 SOCKADDR-STORAGE.
 05 SS-LEN PIC X(1).
 05 SS-FAMILY PIC X(1).
 05 SS-DATA PIC X(126).
 *
 * IP-MREQ for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP
 *
 01 IP-MREQ.
 05 IMR-MULTIADDR PIC 9(8) BINARY.
 05 IMR-INTERFACE PIC 9(8) BINARY.
 *
 * IP-MREQ-SOURCE for
 * IP_ADD_SOURCE_MEMBERSHIP
 * IP_DROP_SOURCE_MEMBERSHIP
 * IP_BLOCK_SOURCE
 * IP_UNBLOCK_SOURCE
 *
 01 IP-MREQ-SOURCE.
 05 IMR-MULTIADDR PIC 9(8) BINARY.
 05 IMR-SOURCEADDR PIC 9(8) BINARY.
 05 IMR-INTERFACE PIC 9(8) BINARY.
 *
 * IPV6-MREQ for IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP
 *
 01 IPV6-MREQ.
 05 IPV6MR-MULTIADDR.
 10 FILLER PIC 9(16) BINARY.
 10 FILLER PIC 9(16) BINARY.
 05 IPV6MR-INTERFACE PIC 9(8) BINARY.
 *
 * GROUP-REQ for
 * MCAST_JOIN_GROUP
 * MCAST_LEAVE_GROUP
 *
 01 GROUP-REQ.
 05 GR-INTERFACE PIC 9(8) BINARY.
 05 FILLER PIC X(4).
 05 GR-GROUP PIC X(128).
 05 GR-GROUP-R REDEFINES GR-GROUP.
 10 GR-GROUP-SOCK-LEN PIC X(1).
 10 GR-GROUP-SOCK-FAMILY PIC X(1).
 10 GR-GROUP-SOCK-DATA PIC X(26).
 10 GR-GROUP-SOCK-SIN REDEFINES GR-GROUP-SOCK-DATA.
 15 GR-GROUP-SOCK-SIN-PORT PIC 9(4) BINARY.
 15 GR-GROUP-SOCK-SIN-ADDR PIC 9(8) BINARY.
 15 FILLER PIC X(8).
 15 FILLER PIC X(12).
 10 GR-GROUP-SOCK-SIN6 REDEFINES GR-GROUP-SOCK-DATA.
 15 GR-GROUP-SOCK-SIN6-PORT PIC 9(4) BINARY.
 15 GR-GROUP-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 15 GR-GROUP-SOCK-SIN6-ADDR.
 20 FILLER PIC 9(16) BINARY.
 20 FILLER PIC 9(16) BINARY.
 15 GR-GROUP-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 10 FILLER PIC X(100).
 *
 * GROUP-SOURCE-REQ for
 * MCAST_BLOCK_SOURCE
 * MCAST_UNBLOCK_SOURCE
 * MCAST_JOIN_SOURCE_GROUP
 * MCAST_LEAVE_SOURCE_GROUP
 *
 01 GROUP-SOURCE-REQ.

Chapter 7. CALL instruction application programming interface 219

 05 GSR-INTERFACE PIC 9(8) BINARY.
 05 FILLER PIC X(4).
 05 GSR-GROUP PIC X(128).
 05 GSR-GROUP-R REDEFINES GSR-GROUP.
 10 GSR-GROUP-SOCK-LEN PIC X(1).
 10 GSR-GROUP-SOCK-FAMILY PIC X(1).
 10 GSR-GROUP-SOCK-DATA PIC X(26).
 10 GSR-GROUP-SOCK-SIN REDEFINES GSR-GROUP-SOCK-DATA.
 15 GSR-GROUP-SOCK-SIN-PORT PIC 9(4) BINARY.
 15 GSR-GROUP-SOCK-SIN-ADDR PIC 9(8) BINARY.
 15 FILLER PIC X(8).
 15 FILLER PIC X(12).
 10 GSR-GROUP-SOCK-SIN6 REDEFINES GSR-GROUP-SOCK-DATA.
 15 GSR-GROUP-SOCK-SIN6-PORT PIC 9(4) BINARY.
 15 GSR-GROUP-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 15 GSR-GROUP-SOCK-SIN6-ADDR.
 20 FILLER PIC 9(16) BINARY.
 20 FILLER PIC 9(16) BINARY.
 15 GSR-GROUP-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 10 FILLER PIC X(100).
 05 GSR-SOURCE PIC X(128).
 05 GSR-SOURCE-R REDEFINES GSR-SOURCE.
 10 GSR-SOURCE-SOCK-LEN PIC X(1).
 10 GSR-SOURCE-SOCK-FAMILY PIC X(1).
 10 GSR-SOURCE-SOCK-DATA PIC X(26).
 10 GSR-SOURCE-SOCK-SIN REDEFINES GSR-SOURCE-SOCK-DATA.
 15 GSR-SOURCE-SOCK-SIN-PORT PIC 9(4) BINARY.
 15 GSR-SOURCE-SOCK-SIN-ADDR PIC 9(8) BINARY.
 15 FILLER PIC X(8).
 15 FILLER PIC X(12).
 10 GSR-SOURCE-SOCK-SIN6 REDEFINES GSR-SOURCE-SOCK-DATA.
 15 GSR-SOURCE-SOCK-SIN6-PORT PIC 9(4) BINARY.
 15 GSR-SOURCE-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 15 GSR-SOURCE-SOCK-SIN6-ADDR.
 20 FILLER PIC 9(16) BINARY.
 20 FILLER PIC 9(16) BINARY.
 15 GSR-SOURCE-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 10 FILLER PIC X(100).
 *
 * MULTICAST CONSTANTS
 *
 77 MCAST-INCLUDE PIC 9(8) BINARY VALUE 0.
 77 MCAST-EXCLUDE PIC 9(8) BINARY VALUE 1.
 77 MCAST-NUMSRC-MAX PIC 9(8) BINARY VALUE 64.
 *
 * IP-MSFILTER
 *
 01 IP-MSFILTER.
 02 IMSF-HEADER.
 03 IMSF-MULTIADDR PIC 9(8) BINARY.
 03 IMSF-INTERFACE PIC 9(8) BINARY.
 03 IMSF-FMODE PIC 9(8) BINARY.
 88 IMSF-FMODE-INCLUDE VALUE 0.
 88 IMSF-FMODE-EXCLUDE VALUE 1.
 03 IMSF-NUMSRC PIC 9(8) BINARY.
 02 IMSF-SLIST.
 03 IMSF-SRCENTRY OCCURS 1 TO 64 TIMES
 DEPENDING ON IMSF-NUMSRC.
 05 IMSF-SRCADDR PIC 9(8) BINARY.
 *
 * GROUP-FILTER
 *
 01 GROUP-FILTER.
 02 GF-HEADER.
 03 GF-INTERFACE PIC 9(8) BINARY.
 03 FILLER PIC X(4).
 03 GF-GROUP PIC X(128).
 03 GF-GROUP-R REDEFINES GF-GROUP.
 05 GF-GROUP-SOCK-LEN PIC X(1).
 05 GF-GROUP-SOCK-FAMILY PIC X(1).
 05 GF-GROUP-SOCK-DATA PIC X(26).
 05 GF-GROUP-SOCK-SIN REDEFINES GF-GROUP-SOCK-DATA.
 10 GF-GROUP-SOCK-SIN-PORT PIC 9(4) BINARY.
 10 GF-GROUP-SOCK-SIN-ADDR PIC 9(8) BINARY.
 10 FILLER PIC X(8).
 10 FILLER PIC X(12).
 05 GF-GROUP-SOCK-SIN6 REDEFINES GF-GROUP-SOCK-DATA.
 10 GF-GROUP-SOCK-SIN6-PORT PIC 9(4) BINARY.
 10 GF-GROUP-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 10 GF-GROUP-SOCK-SIN6-ADDR.
 15 FILLER PIC 9(16) BINARY.
 15 FILLER PIC 9(16) BINARY.
 10 GF-GROUP-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 05 FILLER PIC X(100).
 03 GF-FMODE PIC 9(8) BINARY.
 88 GF-FMODE-INCLUDE VALUE 0.
 88 GF-FMODE-EXCLUDE VALUE 1.
 03 GF-NUMSRC PIC 9(8) BINARY.
 02 GF-SLIST.
 03 GF-SRCENTRY OCCURS 1 TO 64 TIMES
 DEPENDING ON GF-NUMSRC.
 05 GF-SRCADDR PIC X(128).
 05 GF-SRCADDR-R REDEFINES GF-SRCADDR.

220 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 10 GF-SLIST-SOCK-LEN PIC X(1).
 10 GF-SLIST-SOCK-FAMILY PIC X(1).
 10 GF-SLIST-SOCK-DATA PIC X(26).
 10 GF-SLIST-SOCK-SIN REDEFINES GF-SLIST-SOCK-DATA.
 15 GF-SLIST-SOCK-SIN-PORT PIC 9(4) BINARY.
 15 GF-SLIST-SOCK-SIN-ADDR PIC 9(8) BINARY.
 15 FILLER PIC X(8).
 15 FILLER PIC X(12).
 10 GF-SLIST-SOCK-SIN6 REDEFINES GF-SLIST-SOCK-DATA.
 15 GF-SLIST-SOCK-SIN6-PORT PIC 9(4) BINARY.
 15 GF-SLIST-SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.
 15 GF-SLIST-SOCK-SIN6-ADDR.
 20 FILLER PIC 9(16) BINARY.
 20 FILLER PIC 9(16) BINARY.
 15 GF-SLIST-SOCK-SIN6-SCOPEID PIC 9(8) BINARY.
 10 FILLER PIC X(100).
 *
 * Structure for setting APPLDATA when using the SIOCSAPPLDATA
 * ioctl.
 *
 77 SETADEYE1 PIC X(8) VALUE 'SETAPPLD'.
 77 SETADVER PIC 9(4) BINARY VALUE 1.
 01 SETAPPLDATA.
 02 SETAD-EYE1 PIC X(8).
 02 SETAD-VER PIC 9(4) BINARY.
 02 SETAD-LEN PIC 9(4) BINARY.
 02 FILLER PIC X(4).
 02 SETAD-PTR64 PIC 9(16) BINARY.
 02 SETAD-PTR31 REDEFINES SETAD-PTR64.
 03 SETAD-PTRHW PIC 9(8) BINARY.
 03 SETAD-PTR USAGE IS POINTER.
 *
 * Structure for containing the actual application data being set
 * by the SIOCSAPPLDATA ioctl.
 *
 77 SETADEYE2 PIC X(8) VALUE 'APPLDATA'.
 01 SETADCONTAINER.
 02 SETAD-EYE2 PIC X(8).
 02 SETAD-BUFFER PIC X(40).
 *
 * TIMEVAL for SO_RCVTIMEO and SO_SNDTIMEO
 *
 01 TIMEVAL.
 02 TV-SEC PIC 9(8) BINARY.
 02 TV-USEC PIC 9(8) BINARY.

 *
 * IFREQ structure for SIOCGIFxxxx ioctls.
 *
 01 IFREQ.
 05 IFR-NAME PIC X(16).
 05 IFR-IFR PIC X(16).
 05 IFR-ADDR REDEFINES IFR-IFR.
 10 IFR-ADDR-LEN PIC X(1).
 10 IFR-ADDR-FAMILY PIC X(1).
 10 IFR-ADDR-PORT PIC 9(4) BINARY.
 10 IFR-ADDR-ADDR PIC 9(8) BINARY.
 10 FILLER PIC X(8).
 05 IFR-DSTADDR REDEFINES IFR-IFR.
 10 IFR-DSTADDR-LEN PIC X(1).
 10 IFR-DSTADDR-FAMILY PIC X(1).
 10 IFR-DSTADDR-PORT PIC 9(4) BINARY.
 10 IFR-DSTADDR-ADDR PIC 9(8) BINARY.
 10 FILLER PIC X(8).
 05 IFR-BROADADDR REDEFINES IFR-IFR.
 10 IFR-BROADADDR-LEN PIC X(1).
 10 IFR-BROADADDR-FAMILY PIC X(1).
 10 IFR-BROADADDR-PORT PIC 9(4) BINARY.
 10 IFR-BROADADDR-ADDR PIC 9(8) BINARY.
 10 FILLER PIC X(8).
 05 IFR-FLAGS-R REDEFINES IFR-IFR.
 10 IFR-FLAGS PIC X(2).
 10 FILLER PIC X(14).
 05 IFR-METRIC-R REDEFINES IFR-IFR.
 10 IFR-METRIC PIC 9(8) BINARY.
 10 FILLER PIC X(12).
 05 IFR-DATA-R REDEFINES IFR-IFR.
 10 IFR-DATA PIC 9(8) BINARY.
 10 FILLER PIC X(12).
 05 IFR-MTU-R REDEFINES IFR-IFR.
 10 IFR-MTU PIC 9(8) BINARY.
 10 FILLER PIC X(12).
 *
 * Constants for use with the IFR_FLAGS field in structure IFREQ.
 *
 01 IFF-UP PIC X(2) VALUE X'0001'.
 01 IFF-BROADCAST PIC X(2) VALUE X'0002'.
 01 IFF-DEBUG PIC X(2) VALUE X'0004'.
 01 IFF-RESTRICTED PIC X(2) VALUE X'0004'.
 01 IFF-LOOPBACK PIC X(2) VALUE X'0008'.
 01 IFF-POINTOPOINT PIC X(2) VALUE X'0010'.
 01 IFF-NOTRAILERS PIC X(2) VALUE X'0020'.
 01 IFF-RUNNING PIC X(2) VALUE X'0040'.

Chapter 7. CALL instruction application programming interface 221

 01 IFF-NOARP PIC X(2) VALUE X'0080'.
 01 IFF-PROMISC PIC X(2) VALUE X'0100'.
 01 IFF-ALLMULTI PIC X(2) VALUE X'0200'.
 01 IFF-MULTICAST PIC X(2) VALUE X'0400'.
 01 IFF-POINTOMULTIPT PIC X(2) VALUE X'0800'.
 01 IFF-BRIDGE PIC X(2) VALUE X'1000'.
 01 IFF-SNAP PIC X(2) VALUE X'2000'.
 01 IFF-VIRTUAL PIC X(2) VALUE X'4000'.
 01 IFF-SAMEHOST PIC X(2) VALUE X'8000'.
 *
 * HOSTENT structure
 *
 01 HOSTENT.
 * Official name of host
 03 H-NAME PIC S9(8) BINARY.
 * Alias list address
 03 H-ALIASES PIC S9(8) BINARY.
 * Host address type
 03 H-ADDRTYPE PIC S9(8) BINARY.
 * Length of address
 03 H-LENGTH PIC S9(8) BINARY.
 * List of addresses from name server
 03 H-ADDR-LIST PIC S9(8) BINARY.
 *
 * Address information structure
 *
 01 ADDRINFO.
 * Flags
 03 AI-FLAGS PIC S9(8) BINARY.
 * Socket family
 03 AI-FAMILY PIC S9(8) BINARY.
 * Socket type
 03 AI-SOCKTYPE PIC S9(8) BINARY.
 * Protocol
 03 AI-PROTOCOL PIC S9(8) BINARY.
 * Length of AI-ADDR value
 03 AI-ADDRLEN PIC S9(8) BINARY.
 * Pad to double word boundary
 03 FILLER PIC X(4).
 03 FILLER PIC X(4).
 * Canonical name
 03 AI-CANONNAME PIC S9(8) BINARY.
 03 FILLER PIC X(4).
 * Binary address, sockaddr_in(6)
 03 AI-ADDR PIC S9(8) BINARY.
 03 FILLER PIC X(4).
 * Next addrinfo structure
 03 AI-NEXT PIC S9(8) BINARY.
 * Extended flags
 03 AI-EFLAGS PIC S9(8) BINARY.
 *
 * AI-FLAGS mappings
 *
 77 AI-PASSIVE PIC X(4) VALUE X'00000001'.
 77 AI-PASSIVE-BIT PIC S9(8) BINARY VALUE 1.
 77 AI-CANONNAMEOK PIC X(4) VALUE X'00000002'.
 77 AI-CANONNAMEOK-BIT PIC S9(8) BINARY VALUE 2.
 77 AI-NUMERICHOST PIC X(4) VALUE X'00000004'.
 77 AI-NUMERICHOST-BIT PIC S9(8) BINARY VALUE 4.
 77 AI-NUMERICSERV PIC X(4) VALUE X'00000008'.
 77 AI-NUMERICSERV-BIT PIC S9(8) BINARY VALUE 8.
 77 AI-V4MAPPED PIC X(4) VALUE X'00000010'.
 77 AI-V4MAPPED-BIT PIC S9(8) BINARY VALUE 16.
 77 AI-ALL PIC X(4) VALUE X'00000020'.
 77 AI-ALL-BIT PIC S9(8) BINARY VALUE 32.
 77 AI-ADDRCONFIG PIC X(4) VALUE X'00000040'.
 77 AI-ADDRCONFIG-BIT PIC S9(8) BINARY VALUE 64.
 77 AI-EXTFLAGS PIC X(4) VALUE X'00000080'.
 77 AI-EXTFLAGS-BIT PIC S9(8) BINARY VALUE 128.
 77 AI-ALLFLAGMASK PIC X(4) VALUE X'FFFFFF00'.
 77 AI-ALLFLAGMASK-BITS PIC S9(8) VALUE -256.
 *
 * AI-EFLAGS mappings
 * Also maps OPTVAL for getsockopt and setsockopt when
 * OPTNAME is IPV6-ADDR-PREFERENCES
 * Also maps FLAGS for inet6_is_srcaddr
 *
 77 IPV6-PREFER-SRC-HOME PIC S9(8) BINARY VALUE 1.
 77 IPV6-PREFER-SRC-COA PIC S9(8) BINARY VALUE 2.
 77 IPV6-PREFER-SRC-TMP PIC S9(8) BINARY VALUE 4.
 77 IPV6-PREFER-SRC-PUBLIC PIC S9(8) BINARY VALUE 8.
 77 IPV6-PREFER-SRC-CGA PIC S9(8) BINARY VALUE 16.
 77 IPV6-PREFER-SRC-NONCGA PIC S9(8) BINARY VALUE 32.
 77 IPV6-PREFER-SRC-INVALIDBITS PIC S9(8) BINARY VALUE -64.
 *
 * NI_FLAGS mappings
 *
 77 NI-NOFQDN PIC X(4) VALUE X'00000001'.
 77 NI-NUMERICHOST PIC X(4) VALUE X'00000002'.
 77 NI-NAMEREQD PIC X(4) VALUE X'00000004'.
 77 NI-NUMERICSERV PIC X(4) VALUE X'00000008'.
 77 NI-DGRAM PIC X(4) VALUE X'00000010'.
 77 NI-NUMERICSCOPE PIC X(4) VALUE X'00000020'.

222 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 *
 * End of EZACOBOL - COBOL COMMON VARIABLES
 *

Figure 78. EZACOBOL COBOL common variables

COBOL call interface sample IPv6 server program
The EZASO6CS program is a server program that shows you how to use the following calls provided by the
call socket interface:

• ACCEPT
• BIND
• CLOSE
• EZACIC09
• FREEADDRINFO
• GETADDRINFO
• GETCLIENTID
• GETHOSTNAME
• INITAPI
• LISTEN
• NTOP
• PTON
• READ
• SOCKET
• TERMAPI
• WRITE

 * *
 * MODULE NAME: EZASO6CS - THIS IS A VERY SIMPLE IPV6 SERVER *
 * *
 * Copyright: Licensed Materials - Property of IBM *
 * *
 * "Restricted Materials of IBM" *
 * *
 * 5694-A01 *
 * *
 * Copyright IBM Corp. 2002, 2008 *
 * *
 * US Government Users Restricted Rights - *
 * Use, duplication or disclosure restricted by *
 * GSA ADP Schedule Contract with IBM Corp. *

 * *
 * Note: COBOL variable names can contain a maximum of *
 * 30 characters. *

 * *
 * Status: CSV1R10 *
 * *
 * LANGUAGE: COBOL *
 * *

 Identification Division.
 ========================

 Program-id. EZASO6CS.

 =====================
 Environment Division.
 =====================

 ==============
 Data Division.
 ==============

 Working-storage Section.

Chapter 7. CALL instruction application programming interface 223

 * Socket interface function codes *

 01 soket-functions.
 02 soket-accept pic x(16) value 'ACCEPT '.
 02 soket-bind pic x(16) value 'BIND '.
 02 soket-close pic x(16) value 'CLOSE '.
 02 soket-connect pic x(16) value 'CONNECT '.
 02 soket-fcntl pic x(16) value 'FCNTL '.
 02 soket-freeaddrinfo pic x(16) value 'FREEADDRINFO '.
 02 soket-getaddrinfo pic x(16) value 'GETADDRINFO '.
 02 soket-getclientid pic x(16) value 'GETCLIENTID '.
 02 soket-gethostbyaddr pic x(16) value 'GETHOSTBYADDR '.
 02 soket-gethostbyname pic x(16) value 'GETHOSTBYNAME '.
 02 soket-gethostid pic x(16) value 'GETHOSTID '.
 02 soket-gethostname pic x(16) value 'GETHOSTNAME '.
 02 soket-getnameinfo pic x(16) value 'GETNAMEINFO '.
 02 soket-getpeername pic x(16) value 'GETPEERNAME '.
 02 soket-getsockname pic x(16) value 'GETSOCKNAME '.
 02 soket-getsockopt pic x(16) value 'GETSOCKOPT '.
 02 soket-givesocket pic x(16) value 'GIVESOCKET '.
 02 soket-initapi pic x(16) value 'INITAPI '.
 02 soket-ioctl pic x(16) value 'IOCTL '.
 02 soket-listen pic x(16) value 'LISTEN '.
 02 soket-ntop pic x(16) value 'NTOP '.
 02 soket-pton pic x(16) value 'PTON '.
 02 soket-read pic x(16) value 'READ '.
 02 soket-recv pic x(16) value 'RECV '.
 02 soket-recvfrom pic x(16) value 'RECVFROM '.
 02 soket-select pic x(16) value 'SELECT '.
 02 soket-send pic x(16) value 'SEND '.
 02 soket-sendto pic x(16) value 'SENDTO '.
 02 soket-setsockopt pic x(16) value 'SETSOCKOPT '.
 02 soket-shutdown pic x(16) value 'SHUTDOWN '.
 02 soket-socket pic x(16) value 'SOCKET '.
 02 soket-takesocket pic x(16) value 'TAKESOCKET '.
 02 soket-termapi pic x(16) value 'TERMAPI '.
 02 soket-write pic x(16) value 'WRITE '.

 * Work variables *

 01 errno pic 9(8) binary value zero.
 01 retcode pic s9(8) binary value zero.
 01 client-ipaddr-dotted pic x(15) value space.
 01 server-ipaddr-dotted pic x(15) value space.
 01 ezaconn-function pic x value space.
 88 CONNECTED value 'Y'.
 01 saved-message-id pic x(8) value space.
 88 close-down-message-received value '*CLSDWN*'.
 01 Terminate-Options pic x value space.
 88 Opened-API value 'A'.
 88 Opened-Socket value 'S'.
 01 saved-message-id-len pic 9(8) Binary value 8.
 01 Cur-time .
 02 Hour pic 9(2).
 02 Minute pic 9(2).
 02 Second pic 9(2).
 02 Hund-Sec pic 9(2).
 01 S pic 9(4) comp.

 * Variables used for the INITAPI call *

 01 maxsoc-fwd pic 9(8) Binary.
 01 maxsoc-rdf redefines maxsoc-fwd.
 02 filler pic x(2).
 02 maxsoc pic 9(4) Binary.
 01 initapi-ident.
 05 tcpname pic x(8) Value 'TCPCS '.
 05 asname pic x(8) Value space.
 01 subtask pic x(8) value 'EZASO6CS'.
 01 maxsno pic 9(8) Binary Value 1.

 * Variables returned by the GETCLIENTID Call *

 01 clientid.
 05 clientid-domain pic 9(8) Binary value 19.
 05 clientid-name pic x(8) value space.
 05 clientid-task pic x(8) value space.
 05 filler pic x(20) value low-value.

 * Variables used for the SOCKET call *

 01 AF-INET pic 9(8) Binary Value 2.
 01 AF-INET6 pic 9(8) Binary Value 19.
 01 SOCK-STREAM pic 9(8) Binary Value 1.
 01 SOCK-DATAGRAM pic 9(8) Binary Value 2.
 01 SOCK-RAW pic 9(8) Binary Value 3.
 01 IPPROTO-IP pic 9(8) Binary Value zero.
 01 IPPROTO-TCP pic 9(8) Binary Value 6.
 01 IPPROTO-UDP pic 9(8) Binary Value 17.
 01 IPPROTO-IPV6 pic 9(8) Binary Value 41.
 01 socket-descriptor pic 9(4) Binary Value zero.

224 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 * Variables returned by the GETHOSTNAME Call *

 01 host-name-len pic 9(8) binary.
 01 host-name pic x(24).
 01 host-name-char-count pic 9(4) binary.
 01 host-name-unstrung pic x(24) value spaces.

 * Variables used/returned by the GETADDRINFO Call *

 01 node-name pic x(255).
 01 node-name-len pic 9(8) binary.
 01 service-name pic x(32).
 01 service-name-len pic 9(8) binary.
 01 canonical-name-len pic 9(8) binary.
 01 ai-passive pic 9(8) binary value 1.
 01 ai-canonnameok pic 9(8) binary value 2.
 01 ai-numerichost pic 9(8) binary value 4.
 01 ai-numericserv pic 9(8) binary value 8.
 01 ai-v4mapped pic 9(8) binary value 16.
 01 ai-all pic 9(8) binary value 32.
 01 ai-addrconfig pic 9(8) binary value 64.

 * Variables used for the BIND call *

 01 server-socket-address.
 05 server-family pic 9(4) Binary value 19.
 05 server-port pic 9(4) Binary value 1031.
 05 server-flowinfo pic 9(8) Binary value 0.
 05 server-ipaddr.
 10 filler pic 9(16) Binary value 0.
 10 filler pic 9(16) Binary value 0.
 05 server-scopeid pic 9(8) Binary value 0.
 01 NBYTE PIC 9(8) COMP value 80.
 01 BUF PIC X(80).
 01 BACKLOG PIC S9(8) COMP VALUE 10.

 * Variables used/returned by the EZACIC09 call *

 01 input-addrinfo-ptr usage is pointer.
 01 output-name-len pic 9(8) binary.
 01 output-canonical-name pic x(256).
 01 output-name usage is pointer.
 01 output-next-addrinfo usage is pointer.

 * Variables used for the LISTEN call *

 01 backlog-level pic 9(4) Binary Value zero.

 * Variables used for the ACCEPT call *

 01 socket-descriptor-new pic 9(4) Binary Value zero.

 * Variables used for the NTOP/PTON call *

 01 IN6ADDR-ANY pic x(45)
 value '::'.
 01 IN6ADDR-LOOPBACK pic x(45)
 value '::1'.
 01 ntop-family pic 9(8) Binary.
 01 pton-family pic 9(8) Binary.
 01 presentable-addr pic x(45) value spaces.
 01 presentable-addr-len pic 9(4) Binary value 45.
 01 numeric-addr.
 05 filler pic 9(16) Binary Value 0.
 05 filler pic 9(16) Binary Value 0.

 * Variables used by the RECV Call *

 01 client-socket-address.
 05 client-family pic 9(4) Binary Value 19.
 05 client-port pic 9(4) Binary Value 1032.
 05 client-flowinfo pic 9(8) Binary Value zero.
 05 client-ipaddr.
 10 filler pic 9(16) Binary Value 0.
 10 filler pic 9(16) Binary Value 0.
 05 client-scopeid pic 9(8) Binary Value zero.

 * Buffer and length field for recv and send operation *

 01 send-request-len pic 9(8) Binary Value zero.
 01 read-request-len pic 9(8) Binary Value zero.
 01 read-buffer pic x(4000) value space.
 01 filler redefines read-buffer.
 05 message-id pic x(8).
 05 filler pic x(3992).

 * recv and send flags *

 01 send-flag pic 9(8) Binary value zero.
 01 recv-flag pic 9(8) Binary value zero.

 * Error message for socket interface errors *

Chapter 7. CALL instruction application programming interface 225

 77 failure pic S9(8) comp.
 01 ezaerror-msg.
 05 filler pic x(9) Value 'Function='.
 05 ezaerror-function pic x(16) Value space.
 05 filler pic x value ' '.
 05 filler pic x(8) Value 'Retcode='.
 05 ezaerror-retcode pic ---99.
 05 filler pic x value ' '.
 05 filler pic x(9) Value 'Errorno='.
 05 ezaerror-errno pic zzz99.
 05 filler pic x value ' '.
 05 ezaerror-text pic x(50) value ' '.

 *================
 Linkage Section.
 *================
 01 L1.
 03 hints-addrinfo.
 05 hints-ai-flags pic 9(8) binary.
 05 hints-ai-family pic 9(8) binary.
 05 hints-ai-socktype pic 9(8) binary.
 05 hints-ai-protocol pic 9(8) binary.
 05 filler pic 9(8) binary.
 05 filler pic 9(8) binary.
 05 filler pic 9(8) binary.
 05 filler pic 9(8) binary.
 03 hints-addrinfo-ptr usage is pointer.
 03 results-addrinfo-ptr usage is pointer.
 *
 * Results address info
 *
 01 results-addrinfo.
 05 results-ai-flags pic 9(8) binary.
 05 results-ai-family pic 9(8) binary.
 05 results-ai-socktype pic 9(8) binary.
 05 results-ai-protocol pic 9(8) binary.
 05 results-ai-addr-len pic 9(8) binary.
 05 results-ai-canonical-name usage is pointer.
 05 results-ai-addr-ptr usage is pointer.
 05 results-ai-next-ptr usage is pointer.
 *
 * Socket address structure from EZACIC09.
 *
 01 output-name-ptr usage is pointer.
 01 output-ip-name.
 03 output-ip-family pic 9(4) Binary.
 03 output-ip-port pic 9(4) Binary.
 03 output-ip-sock-data pic x(24).
 03 output-ipv4-sock-data redefines
 output-ip-sock-data.
 05 output-ipv4-ipaddr pic 9(8) Binary.
 05 filler pic x(20).
 03 output-ipv6-sock-data redefines
 output-ip-sock-data.
 05 output-ipv6-flowinfo pic 9(8) Binary.
 05 output-ipv6-ipaddr.
 10 filler pic 9(16) Binary.
 10 filler pic 9(16) Binary.
 05 output-ipv6-scopeid pic 9(8) Binary.

 ===
 Procedure Division using L1.
 ===

 ~~
 * P R O C E D U R E C O N T R O L S *
 ~~

 Perform Initialize-API thru Initialize-API-Exit.
 Perform Get-ClientID thru Get-ClientID-Exit.
 Perform Sockets-Descriptor thru Sockets-Descriptor-Exit.
 Perform Presentation-To-Numeric thru
 Presentation-To-Numeric-Exit.
 Perform Get-Host-Name thru Get-Host-Name-Exit.
 Perform Get-Address-Info thru Get-Address-Info-Exit.
 Perform Bind-Socket thru Bind-Socket-Exit.
 Perform Listen-To-Socket thru Listen-To-Socket-Exit.
 Perform Accept-Connection thru Accept-Connection-Exit.
 Move 45 to presentable-addr-len.
 Move spaces to presentable-addr.
 Move server-ipaddr to numeric-addr.
 Move 19 to ntop-family.
 Perform Numeric-TO-Presentation thru
 Numeric-To-Presentation-Exit.
 Perform Read-Message thru Read-Message-Exit.
 Perform Write-Message thru Write-Message-Exit.
 Perform Close-Socket thru Exit-Now.

 * Initialize socket API *

 Initialize-API.
 Move soket-initapi to ezaerror-function.

226 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 * If you want to set maxsoc to the max, uncomment the next line.*

 * Move 65535 to maxsoc-fwd.
 Call 'EZASOKET' using soket-initapi maxsoc initapi-ident
 subtask maxsno errno retcode.
 Move 'Initapi failed' to ezaerror-text.
 If retcode < 0 move 12 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move 'A' to Terminate-Options.
 Initialize-API-Exit.
 Exit.

 * Let us see the client-id *

 Get-ClientID.
 move soket-getclientid to ezaerror-function.
 Call 'EZASOKET' using soket-getclientid clientid errno
 retcode.
 Display 'Client ID = ' clientid-name
 'task=' clientid-task.
 Move 'Getclientid failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Get-ClientID-Exit.
 Exit.

 * Get us a stream socket descriptor. *

 Sockets-Descriptor.
 move soket-socket to ezaerror-function.
 Call 'EZASOKET' using soket-socket AF-INET6 SOCK-STREAM
 IPPROTO-IP errno retcode.
 Move 'Socket call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move retcode to socket-descriptor.
 Move 'S' to Terminate-Options.
 Sockets-Descriptor-Exit.
 Exit.

 * Use PTON to create an IP address to bind to. *

 Presentation-To-Numeric.
 move soket-pton to ezaerror-function.
 move IN6ADDR-LOOPBACK to presentable-addr.
 Call 'EZASOKET' using soket-pton AF-INET6
 presentable-addr presentable-addr-len
 numeric-addr
 errno retcode.
 Move 'PTON call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 move numeric-addr to server-ipaddr.
 Presentation-To-Numeric-Exit.
 Exit.

 * Get the host name. *

 Get-Host-Name.
 move soket-gethostname to ezaerror-function.
 move 24 to host-name-len.
 Call 'EZASOKET' using soket-gethostname
 host-name-len host-name
 errno retcode.
 display 'Host name = ' host-name.
 Move 'GETHOSTNAME call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Get-Host-Name-Exit.
 Exit.

 * Get address information *

 Get-Address-Info.
 move soket-getaddrinfo to ezaerror-function.
 move 0 to host-name-char-count.
 inspect host-name tallying host-name-char-count
 for characters before x'00'.
 unstring host-name delimited by x'00'
 into host-name-unstrung
 count in host-name-char-count.
 string host-name-unstrung delimited by ' '
 into node-name.
 move host-name-char-count to node-name-len
 display 'node-name-len: ' node-name-len.
 move spaces to service-name.
 move 0 to service-name-len.

Chapter 7. CALL instruction application programming interface 227

 move 0 to hints-ai-family.
 move ai-canonnameok to hints-ai-flags
 move 0 to hints-ai-socktype.
 move 0 to hints-ai-protocol.
 display 'GETADDRINFO Input fields: '
 display 'Node name = ' node-name.
 display 'Node name length = ' node-name-len.
 display 'Service name = ' service-name.
 display 'Service name length = ' service-name-len.
 display 'Hints family = ' hints-ai-family.
 display 'Hints flags = ' hints-ai-flags.
 display 'Hints socktype = ' hints-ai-socktype.
 display 'Hints protocol = ' hints-ai-protocol.
 set address of results-addrinfo to results-addrinfo-ptr.
 move soket-getaddrinfo to ezaerror-function.
 set hints-addrinfo-ptr to address of hints-addrinfo.
 Call 'EZASOKET' using soket-getaddrinfo
 node-name node-name-len
 service-name service-name-len
 hints-addrinfo-ptr
 results-addrinfo-ptr
 canonical-name-len
 errno retcode.
 Move 'GETADDRINFO call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure
 Perform Return-Code-Check thru Return-Code-Exit
 else
 Perform Return-Code-Check thru Return-Code-Exit
 display 'Address of results addrinfo is '
 results-addrinfo-ptr.
 set address of results-addrinfo to results-addrinfo-ptr
 set input-addrinfo-ptr to address of results-addrinfo
 display 'Address of input-addrinfo-ptr is '
 input-addrinfo-ptr.
 Perform Format-Result-AI thru Format-Result-AI-Exit
 Perform Set-Next-Addrinfo thru
 Set-Next-Addrinfo-Exit until
 output-next-addrinfo is equal to NULLS
 Perform Free-Address-Info thru Free-Address-Info-Exit.
 Get-Address-Info-Exit.
 Exit.

 * Set next addrinfo address *

 Set-Next-Addrinfo.
 display 'Setting next addrinfo address as '
 results-ai-next-ptr.
 display 'Address of output-next-addrinfo as '
 output-next-addrinfo.
 set address of results-addrinfo to output-next-addrinfo.
 set input-addrinfo-ptr to address of results-addrinfo.
 display 'Address of input-addrinfo-ptr is '
 input-addrinfo-ptr.
 Perform Format-Result-AI thru Format-Result-AI-Exit.
 Set-Next-Addrinfo-Exit.
 Exit.

 * Format result address information *

 Format-Result-AI.
 move 'EZACIC09' to ezaerror-function.
 move zeros to output-name-len.
 move spaces to output-canonical-name.
 set output-name to nulls.
 set output-next-addrinfo to nulls.
 Call 'EZACIC09' using input-addrinfo-ptr
 output-name-len
 output-canonical-name
 output-name
 output-next-addrinfo
 retcode.
 Move 'EZACIC09 call failed' to ezaerror-text.
 display 'EZACIC09 output:'
 display 'Canonical name = ' output-canonical-name.
 display 'name length = ' output-name-len.
 display 'name = ' output-name.
 display 'next addrinfo = ' output-next-addrinfo.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 display 'Formatting result address ip address'.
 set address of output-ip-name to output-name.
 move results-ai-family to ntop-family.
 display 'ntop-family = ' ntop-family.
 if ntop-family = AF-INET then
 display 'Formatting ipv4 addres'
 move output-ipv4-ipaddr to numeric-addr
 move 16 to presentable-addr-len
 else
 display 'Formatting ipv6 addres'
 move output-ipv6-ipaddr to numeric-addr
 move 45 to presentable-addr-len.

228 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 move spaces to presentable-addr.
 Perform Numeric-To-Presentation thru
 Numeric-To-Presentation-Exit.
 Format-Result-AI-Exit.
 Exit.

 * Release resolver storage *

 Free-Address-Info.
 move soket-freeaddrinfo to ezaerror-function.
 Call 'EZASOKET' using soket-freeaddrinfo
 results-addrinfo-ptr
 errno retcode.
 Move 'FREEADDRINFO call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Free-Address-Info-Exit.
 Exit.

 * Bind socket to our server port number *

 Bind-Socket.
 Move soket-bind to ezaerror-function.
 Call 'EZASOKET' using soket-bind socket-descriptor
 server-socket-address errno retcode.
 Display 'Port = ' server-port
 ' Address = ' presentable-addr.
 Move 'Bind call failed' to ezaerror-text
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Bind-Socket-Exit.
 Exit.

 * Listen to the socket *

 Listen-To-Socket.
 Move soket-listen to ezaerror-function.
 Call 'EZASOKET' using soket-listen socket-descriptor
 backlog errno retcode.
 Display 'Backlog=' backlog.
 Move 'Listen call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Listen-To-Socket-Exit.
 Exit.

 * Accept a connection request *

 Accept-Connection.
 Move soket-accept to ezaerror-function.
 Call 'EZASOKET' using soket-accept socket-descriptor
 server-socket-address errno retcode.
 Move retcode to socket-descriptor-new.
 Display 'New socket=' retcode.
 Move 'Accept call failed' to ezaerror-text .
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Accept-Connection-Exit.
 Exit.

 * Use NTOP to display the IP address. *

 Numeric-To-Presentation.
 move soket-ntop to ezaerror-function.
 Call 'EZASOKET' using soket-ntop ntop-family
 numeric-addr
 presentable-addr presentable-addr-len
 errno retcode.
 Display 'Presentable address = ' presentable-addr.
 Move 'NTOP call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Numeric-TO-Presentation-Exit.
 Exit.

 * Read a message from the client. *

 Read-Message.
 move soket-read to ezaerror-function.
 move spaces to buf.
 display 'New socket desciptor = ' socket-descriptor-new.
 Call 'EZASOKET' using soket-read socket-descriptor-new
 nbyte buf
 errno retcode.
 display 'Message received = ' buf.
 Move 'Read call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.

Chapter 7. CALL instruction application programming interface 229

 Perform Return-Code-Check thru Return-Code-Exit.
 Read-Message-Exit.
 Exit.

 * Write a message to the client. *

 Write-Message.
 move soket-write to ezaerror-function.
 move 'Message from EZASO6SC' to buf.
 Call 'EZASOKET' using soket-write socket-descriptor-new
 nbyte buf
 errno retcode.
 Move 'Write call failed' to ezaerror-text
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Write-Message-Exit.
 Exit.

 * Close connected socket *

 Close-Socket.
 move soket-close to ezaerror-function
 Call 'EZASOKET' using soket-close socket-descriptor-new
 errno retcode.
 Accept cur-time from time.
 Display cur-time ' EZASO6CS : CLOSE RETCODE=' RETCODE
 ' ERRNO= ' ERRNO.
 If retcode < 0 move 24 to failure
 move 'Close call Failed' to ezaerror-text
 perform write-ezaerror-msg thru write-ezaerror-msg-exit.
 Close-Socket-Exit.
 Exit.

 * Terminate socket API *

 exit-term-api.
 Call 'EZASOKET' using soket-termapi.

 * Terminate program *

 exit-now.
 move failure to return-code.
 Goback.

 * Subroutine *
 * ---------- *
 * *
 * Write out an error message *

 write-ezaerror-msg.
 move errno to ezaerror-errno.
 move retcode to ezaerror-retcode.
 display ezaerror-msg.
 write-ezaerror-msg-exit.
 exit.

 * Check Return Code after each Socket Call *

 Return-Code-Check.
 Accept Cur-Time from TIME.
 move errno to ezaerror-errno.
 move retcode to ezaerror-retcode.
 Display Cur-Time ' EZASO6CS: ' ezaerror-function
 ' RETCODE= ' ezaerror-retcode
 ' ERRNO= ' ezaerror-errno.
 IF RETCODE < 0
 Perform Write-ezaerror-msg thru write-ezaerror-msg-exit
 Move zeros to errno retcode
 IF Opened-Socket Go to Close-Socket
 ELSE IF Opened-API Go to exit-term-api
 ELSE Go to exit-now.
 Move zeros to errno retcode.
 Return-Code-Exit.
 Exit.

Figure 79. EZASO6CS COBOL call interface sample IPv6 server program

230 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

COBOL call interface sample IPv6 client program
The EZASO6CC program is a client module that shows you how to use the following calls provided by the
call socket interface:

• CLOSE
• CONNECT
• GETCLIENTID
• GETNAMEINFO
• INITAPI
• NTOP
• PTON
• READ
• SHUTDOWN
• SOCKET
• TERMAPI
• WRITE

 * *
 * MODULE NAME: EZASO6CC - THIS IS A VERY SIMPLE IPV6 CLIENT *
 * *
 * Copyright: Licensed Materials - Property of IBM *
 * *
 * "Restricted Materials of IBM" *
 * *
 * 5694-A01 *
 * *
 * Copyright IBM Corp. 2002, 2008 *
 * *
 * US Government Users Restricted Rights - *
 * Use, duplication or disclosure restricted by *
 * GSA ADP Schedule Contract with IBM Corp. *

 * *
 * Note: COBOL variable names can contain a maximum of *
 * 30 characters. *

 * *
 * Status: CSV1R10 *
 * *
 * LANGUAGE: COBOL *
 * *

 Identification Division.
 ========================

 Program-id. EZASO6CC.

 =====================
 Environment Division.
 =====================

 ==============
 Data Division.
 ==============

 Working-storage Section.

 * Socket interface function codes *

 01 soket-functions.
 02 soket-accept pic x(16) value 'ACCEPT '.
 02 soket-bind pic x(16) value 'BIND '.
 02 soket-close pic x(16) value 'CLOSE '.
 02 soket-connect pic x(16) value 'CONNECT '.
 02 soket-fcntl pic x(16) value 'FCNTL '.
 02 soket-freeaddrinfo pic x(16) value 'FREEADDRINFO '.
 02 soket-getaddrinfo pic x(16) value 'GETADDRINFO '.
 02 soket-getclientid pic x(16) value 'GETCLIENTID '.
 02 soket-gethostbyaddr pic x(16) value 'GETHOSTBYADDR '.
 02 soket-gethostbyname pic x(16) value 'GETHOSTBYNAME '.
 02 soket-gethostid pic x(16) value 'GETHOSTID '.
 02 soket-gethostname pic x(16) value 'GETHOSTNAME '.

Chapter 7. CALL instruction application programming interface 231

 02 soket-getnameinfo pic x(16) value 'GETNAMEINFO '.
 02 soket-getpeername pic x(16) value 'GETPEERNAME '.
 02 soket-getsockname pic x(16) value 'GETSOCKNAME '.
 02 soket-getsockopt pic x(16) value 'GETSOCKOPT '.
 02 soket-givesocket pic x(16) value 'GIVESOCKET '.
 02 soket-initapi pic x(16) value 'INITAPI '.
 02 soket-ioctl pic x(16) value 'IOCTL '.
 02 soket-listen pic x(16) value 'LISTEN '.
 02 soket-ntop pic x(16) value 'NTOP '.
 02 soket-pton pic x(16) value 'PTON '.
 02 soket-read pic x(16) value 'READ '.
 02 soket-recv pic x(16) value 'RECV '.
 02 soket-recvfrom pic x(16) value 'RECVFROM '.
 02 soket-select pic x(16) value 'SELECT '.
 02 soket-send pic x(16) value 'SEND '.
 02 soket-sendto pic x(16) value 'SENDTO '.
 02 soket-setsockopt pic x(16) value 'SETSOCKOPT '.
 02 soket-shutdown pic x(16) value 'SHUTDOWN '.
 02 soket-socket pic x(16) value 'SOCKET '.
 02 soket-takesocket pic x(16) value 'TAKESOCKET '.
 02 soket-termapi pic x(16) value 'TERMAPI '.
 02 soket-write pic x(16) value 'WRITE '.

 * Work variables *

 01 errno pic 9(8) binary value zero.
 01 retcode pic s9(8) binary value zero.
 01 index-counter pic 9(8) binary value zero.
 01 buffer-element.
 05 buffer-element-nbr pic 9(5).
 05 filler pic x(3) value space.
 01 server-ipaddr-dotted pic x(15) value space.
 01 client-ipaddr-dotted pic x(15) value space.
 01 close-server pic 9(8) Binary value zero.
 88 close-server-down value 1.
 01 Connect-Flag pic x value space.
 88 CONNECTED value 'Y'.
 01 Client-Server-Flag pic x value space.
 88 CLIENTS value 'C'.
 88 SERVERS value 'S'.
 01 Terminate-Options pic x value space.
 88 Opened-API value 'A'.
 88 Opened-Socket value 'S'.
 01 timer-accum pic 9(8) Binary value zero.
 01 timer-interval pic 9(8) Binary value 2000.
 01 Cur-time.
 02 Hour pic 9(2).
 02 Minute pic 9(2).
 02 Second pic 9(2).
 02 Hund-Sec pic 9(2).
 77 Failure Pic S9(8) comp.

 * Variables used for the INITAPI call *

 01 maxsoc-fwd pic 9(8) Binary.
 01 maxsoc-rdf redefines maxsoc-fwd.
 02 filler pic x(2).
 02 maxsoc pic 9(4) Binary.
 01 initapi-ident.
 05 tcpname pic x(8) Value 'TCPCS '.
 05 asname pic x(8) Value space.
 01 subtask pic x(8) value 'EZSO6CC'.
 01 maxsno pic 9(8) Binary Value 1.

 * Variables used by the SHUTDOWN Call *

 01 how pic 9(8) Binary.

 * Variables returned by the GETCLIENTID Call *

 01 clientid.
 05 clientid-domain pic 9(8) Binary value 19.
 05 clientid-name pic x(8) value space.
 05 clientid-task pic x(8) value space.
 05 filler pic x(20) value low-value.

 * Variables returned by the GETNAMEINFO Call *

 01 name-len pic 9(8) binary.
 01 host-name pic x(255).
 01 host-name-len pic 9(8) binary.
 01 service-name pic x(32).
 01 service-name-len pic 9(8) binary.
 01 name-info-flags pic 9(8) binary value 0.
 01 ni-nofqdn pic 9(8) binary value 1.
 01 ni-numerichost pic 9(8) binary value 2.
 01 ni-namereqd pic 9(8) binary value 4.
 01 ni-numericserver pic 9(8) binary value 8.
 01 ni-dgram pic 9(8) binary value 16.

 * Variables used for the SOCKET call *

 01 AF-INET pic 9(8) Binary Value 2.

232 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 01 AF-INET6 pic 9(8) Binary Value 19.
 01 SOCK-STREAM pic 9(8) Binary Value 1.
 01 SOCK-DATAGRAM pic 9(8) Binary Value 2.
 01 SOCK-RAW pic 9(8) Binary Value 3.
 01 IPPROTO-IP pic 9(8) Binary Value zero.
 01 IPPROTO-TCP pic 9(8) Binary Value 6.
 01 IPPROTO-UDP pic 9(8) Binary Value 17.
 01 IPPROTO-IPV6 pic 9(8) Binary Value 41.
 01 socket-descriptor pic 9(4) Binary Value zero.

 * Server socket address structure *

 01 server-socket-address.
 05 server-afinet pic 9(4) Binary Value 19.
 05 server-port pic 9(4) Binary Value 1031.
 05 server-flowinfo pic 9(8) Binary Value zero.
 05 server-ipaddr.
 10 filler pic 9(16) Binary Value 0.
 10 filler pic 9(16) Binary Value 0.
 05 server-scopeid pic 9(8) Binary Value zero.
 01 NBYTE PIC 9(8) COMP value 80.
 01 BUF PIC X(80).

 * Variables used by the BIND Call *

 01 client-socket-address.
 05 client-family pic 9(4) Binary Value 19.
 05 client-port pic 9(4) Binary Value 1032.
 05 client-flowinfo pic 9(8) Binary Value 0.
 05 client-ipaddr.
 10 filler pic 9(16) Binary Value 0.
 10 filler pic 9(16) Binary Value 0.
 05 client-scopeid pic 9(8) Binary Value 0.

 * Buffer and length fields for send operation *

 01 send-request-length pic 9(8) Binary value zero.
 01 send-buffer.
 05 send-buffer-total pic x(4000) value space.
 05 closedown-message redefines send-buffer-total.
 10 closedown-id pic x(8).
 10 filler pic x(3992).
 05 send-buffer-seq redefines send-buffer-total
 pic x(8) occurs 500 times.

 * Variables used for the NTOP/PTON call *

 01 IN6ADDR-ANY pic x(45)
 value '::'.
 01 IN6ADDR-LOOPBACK pic x(45)
 value '::1'.
 01 presentable-addr pic x(45) value spaces.
 01 presentable-addr-len pic 9(4) Binary value 45.
 01 numeric-addr.
 05 filler pic 9(16) Binary Value 0.
 05 filler pic 9(16) Binary Value 0.

 * Buffer and length fields for recv operation *

 01 read-request-length pic 9(8) Binary value zero.
 01 read-buffer pic x(4000) value space.

 * Other fields for send and reccfrom operation *

 01 send-flag pic 9(8) Binary value zero.
 01 recv-flag pic 9(8) Binary value zero.

 * Error message for socket interface errors *

 01 ezaerror-msg.
 05 filler pic x(9) Value 'Function='.
 05 ezaerror-function pic x(16) Value space.
 05 filler pic x value ' '.
 05 filler pic x(8) Value 'Retcode='.
 05 ezaerror-retcode pic ---99.
 05 filler pic x value ' '.
 05 filler pic x(9) Value 'Errorno='.
 05 ezaerror-errno pic zzz99.
 05 filler pic x value ' '.
 05 ezaerror-text pic x(50) value ' '.

 Linkage Section.
 *================

 ===
 Procedure Division.
 ===

 ~~
 * P R O C E D U R E C O N T R O L S *
 ~~

 Perform Initialize-API thru Initialize-API-Exit.

Chapter 7. CALL instruction application programming interface 233

 Perform Get-Client-ID thru Get-Client-ID-Exit.
 Perform Sockets-Descriptor thru Sockets-Descriptor-Exit.
 Perform Presentation-To-Numeric thru
 Presentation-To-Numeric-Exit.
 Perform CONNECT-Socket thru CONNECT-Socket-Exit.
 Perform Numeric-TO-Presentation thru
 Numeric-To-Presentation-Exit.
 Perform Get-Name-Information thru
 Get-Name-Information-Exit.
 Perform Write-Message thru Write-Message-Exit.
 Perform Shutdown-Send thru Shutdown-Send-Exit.
 Perform Read-Message thru Read-Message-Exit.
 Perform Shutdown-Receive thru Shutdown-Receive-Exit.
 Perform Close-Socket thru Exit-Now.

 * Initialize socket API *

 Initialize-API.
 Move soket-initapi to ezaerror-function.
 Call 'EZASOKET' using soket-initapi maxsoc initapi-ident
 subtask maxsno errno retcode.
 Move 'Initapi failed' to ezaerror-text.
 If retcode < 0 move 12 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move 'A' to Terminate-Options.
 Initialize-API-Exit.
 Exit.

 * Let us see the client-id *

 Get-Client-ID.
 Move soket-getclientid to ezaerror-function.
 Call 'EZASOKET' using soket-getclientid clientid errno
 retcode.
 Display 'Our client ID = ' clientid-name ' ' clientid-task.
 Move 'Getclientid failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move 'C' to client-server-flag.
 Get-Client-ID-Exit.
 Exit.

 * Get us a stream socket descriptor *

 Sockets-Descriptor.
 Move soket-socket to ezaerror-function.
 Call 'EZASOKET' using soket-socket AF-INET6 SOCK-STREAM
 IPPROTO-IP errno retcode.
 Move 'Socket call failed' to ezaerror-text.
 If retcode < 0 move 60 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Move 'S' to Terminate-Options.
 Move retcode to socket-descriptor.
 Sockets-Descriptor-Exit.
 Exit.

 * Use PTON to create an IP address to bind to. *

 Presentation-To-Numeric.
 move soket-pton to ezaerror-function.
 move IN6ADDR-LOOPBACK to presentable-addr.
 Call 'EZASOKET' using soket-pton AF-INET6
 presentable-addr presentable-addr-len
 numeric-addr
 errno retcode.
 Move 'PTON call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 move numeric-addr to server-ipaddr.
 Presentation-To-Numeric-Exit.
 Exit.

 * CONNECT *

 Connect-Socket.
 Move space to Connect-Flag.
 Move zeros to errno retcode.
 move soket-connect to ezaerror-function.
 CALL 'EZASOKET' USING SOKET-CONNECT socket-descriptor
 server-socket-address errno retcode.
 Move 'Connection call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 If retcode = 0 Move 'Y' to Connect-Flag.
 Connect-Socket-Exit.
 Exit.

234 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 * Use NTOP to display the IP address. *

 Numeric-To-Presentation.
 move soket-ntop to ezaerror-function.
 move server-ipaddr to numeric-addr.
 move soket-ntop to ezaerror-function.
 Call 'EZASOKET' using soket-ntop AF-INET6
 numeric-addr
 presentable-addr presentable-addr-len
 errno retcode.
 Display 'Presentable address = ' presentable-addr.
 Move 'NTOP call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Numeric-TO-Presentation-Exit.
 Exit.

 * Use GETNAMEINFO to get the host and service names *

 Get-Name-Information.
 move 28 to name-len.
 move 255 to host-name-len.
 move 32 to service-name-len.
 move ni-namereqd to name-info-flags.
 move soket-getnameinfo to ezaerror-function.
 Call 'EZASOKET' using soket-getnameinfo
 server-socket-address name-len
 host-name host-name-len
 service-name service-name-len
 name-info-flags
 errno retcode.
 Display 'Host name = ' host-name.
 Display 'Service = ' service-name.
 Move 'Getaddrinfo call failed' to ezaerror-text.
 If retcode < 0 move 24 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Get-Name-Information-Exit.
 Exit.

 * Write a message to the server *

 Write-Message.
 Move soket-write to ezaerror-function.
 Move 'Message from EZASO6CC' to buf.
 Call 'EZASOKET' using soket-write socket-descriptor
 nbyte buf
 errno retcode.
 Move 'Write call failed' to ezaerror-text.
 If retcode < 0 move 84 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Write-Message-Exit.
 Exit.

 * Shutdown to pipe *

 Shutdown-Send.
 Move soket-shutdown to ezaerror-function.
 move 1 to how.
 Call 'EZASOKET' using soket-shutdown socket-descriptor
 how
 errno retcode.
 Move 'Shutdown call failed' to ezaerror-text.
 If retcode < 0 move 99 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Shutdown-Send-Exit.
 Exit.

 * Read a message from the server. *

 Read-Message.
 Move soket-read to ezaerror-function.
 Move spaces to buf.
 Call 'EZASOKET' using soket-read socket-descriptor
 nbyte buf
 errno retcode.
 If retcode < 0
 Move 'Read call failed' to ezaerror-text
 move 120 to failure
 Perform Return-Code-Check thru Return-Code-Exit.
 Read-Message-Exit.
 Exit.

 * Shutdown receive pipe *

 Shutdown-Receive.
 Move soket-shutdown to ezaerror-function.
 move 0 to how.
 Call 'EZASOKET' using soket-shutdown socket-descriptor

Chapter 7. CALL instruction application programming interface 235

 how
 errno retcode.
 Move 'Shutdown call failed' to ezaerror-text.
 If retcode < 0 move 99 to failure.
 Perform Return-Code-Check thru Return-Code-Exit.
 Shutdown-Receive-Exit.
 Exit.

 * Close socket *

 Close-Socket.
 Move soket-close to ezaerror-function.
 Call 'EZASOKET' using soket-close socket-descriptor
 errno retcode.
 Move 'Close call failed' to ezaerror-text.
 If retcode < 0 move 132 to failure
 perform write-ezaerror-msg thru
 write-ezaerror-msg-exit.
 Accept Cur-Time from TIME.
 Display Cur-Time ' EZASO6CC: ' ezaerror-function
 ' RETCODE=' RETCODE ' ERRNO= ' ERRNO.
 Close-Socket-Exit.
 Exit.

 * Terminate socket API *

 exit-term-api.
 ACCEPT cur-time from TIME.
 Display cur-time ' EZASO6CC: TERMAPI '
 ' RETCODE= ' RETCODE ' ERRNO= ' ERRNO.
 Call 'EZASOKET' using soket-termapi.

 * Terminate program *

 exit-now.
 Move failure to return-code.
 Goback.

 * Subroutine. *
 * ----------- *
 * Write out an error message *

 write-ezaerror-msg.
 Move errno to ezaerror-errno.
 Move retcode to ezaerror-retcode.
 Display ezaerror-msg.
 write-ezaerror-msg-exit.
 Exit.

 * Check Return Code after each Socket Call *

 Return-Code-Check.
 Accept Cur-Time from TIME.
 Display Cur-Time ' EZASO6CC: ' ezaerror-function
 ' RETCODE=' RETCODE ' ERRNO= ' ERRNO.
 IF RETCODE < 0
 Perform Write-ezaerror-msg thru write-ezaerror-msg-exit
 Move zeros to errno retcode
 IF Opened-Socket Go to Close-Socket
 ELSE IF Opened-API Go to exit-term-api
 ELSE Go to exit-now.
 Move zeros to errno retcode.
 Return-Code-Exit.
 Exit.

Figure 80. EZASO6CC COBOL call interface sample IPv6 client program

236 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Chapter 8. IMS Listener samples

This topic includes sample programs using the IMS Listener. The following samples are included:

• “IMS TCP/IP control statements” on page 237
• “Sample program explicit-mode” on page 240
• “Sample program implicit-mode” on page 248
• “Sample program - IMS MPP client” on page 253

IMS TCP/IP control statements
This topic contains examples of the control statements required to define and initiate the various IMS
TCP/IP components.

JCL for starting a message processing region
This topics shows an example of the JCL that is required to start an IMS message processing region in
which TCP/IP servers can operate. Note the STEPLIB statements that point to TCP/IP and the C run-time
library. A C run-time library is required when you use the GETHOSTBYADDR or GETHOSTBYNAME call. For
more information, see z/OS Program Directory or the topic on C compilers and run-time libraries in the
z/OS Communications Server: IP Sockets Application Programming Interface Guide and Reference.

This sample is based on the IMS procedure (DFSMPR). You might have to modify the language run-time
libraries to match your programming language requirements.

// PROC SOUT=A,RGN=2M,SYS2=,
// CL1=001,CL2=000,CL3=000,CL4=000,
// OPT=N,OVLA=0,SPIE=0,VALCK=0,TLIM=00,
// PCB=000,PRLD=,STIMER=,SOD=,DBLDL=,
// NBA=,OBA=,IMSID=IMS1,AGN=,VSFX=,VFREE=,
// SSM=,PREINIT=,ALTID=,PWFI=N,
// APARM=
//*
//REGION EXEC PGM=DFSRRC00,REGION=&RGN,;
// TIME=1440,DPRTY=(12,0),
// PARM=(MSG,&CL1&CL2&CL3&CL4,;
// &OPT&OVLA&SPIE&VALCK&TLIM&PCB,;
// &PRLD,&STIMER,&SOD,&DBLDL,&NBA,;
// &OBA,&IMSID,&AGN,&VSFX,&VFREE,;
// &SSM,&PREINIT,&ALTID,&PWFI,;
// '&APARM')
//&*;
//STEPLIB DD DSN=IMS31.&SYS2;RESLIB,DISP=SHR
// DD DSN=IMS31.&SYS2;PGMLIB,DISP=SHR
// DD DSN=PLI.LL.V2R3M0.SIBMLINK,DISP=SHR
// DD DSN=PLI.LL.V2R3M0.PLILINK,DISP=SHR
// DD DSN=C370.LL.V2R2M0.SEDCLINK,DISP=SHR
//* Use the following for LE/370 C run-time libraries:
//* DD DSN=CEE.V1R3M0.SCEERUN,DISP=SHR
// DD DSN=TCPIP.SEZATCP,DISP=SHR
//PROCLIB DD DSN=IMS31.&SYS2;PROCLIB,DISP=SHR
//SYSUDUMP DD SYSOUT=&SOUT,DCB=(LRECL=121,BLKSIZE=3129,RECFM=VBA),;
// SPACE=(125,(2500,100),RLSE,,ROUND)
//

JCL for linking the IMS Listener
The following examples are JCL that can be used to link the IMS Listener.

© Copyright IBM Corp. 2000, 2021 237

EZAIMSCZ JCLIN

//EZAIMSCZ JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A
//***
//*NOTE: ANY ZONE UPDATED WITH THE LINK COMMAND OR CROSS-ZONE *
//* INFORMATION CANNOT BE PROCESSED BY SMP/E R6 OR EARLIER.*
//***
//*
//* 5694-A01 Copyright IBM Corp. 1997, 2007
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//*
//* Function: Perform SMP/E LINK for IMS module
//*
//* Instructions:
//* Change all lower case characters to values
//* suitable for your installation.
//*
//* targetzone: z/OS Target Zone
//* imszone : IMS Target Zone
//*
//*
//* Change the high-level qualifier 'imshlq' to match the
//* high-level qualifier for your installation's IMS target
//* data set.
//*
//* Beginning with IMS V1R7 the target lib has changed from
//* RESLIB to SDFSRESL. If you are running IMS V1R7 or higher,
//* you must comment or delete the RESLIB DD card and uncomment
//* the SDFSRESL DD card.
//*
//EZAIMSCZ EXEC PGM=GIMSMP,REGION=4096K
//***
//RESLIB DD DISP=SHR,DSN=imshlq.RESLIB
//*SDFSRESL DD DISP=SHR,DSN=imshlq.SDFSRESL
//***
//*
//SMPCSI dd dsn=zos.global.csi,disp=old
//*
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(900,200))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT4 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SMPWRK1 DD UNIT=SYSDA,SPACE=(8800,(75,0,216)),
// DCB=(BLKSIZE=8800,LRECL=80)
//SMPWRK2 DD UNIT=SYSDA,SPACE=(8800,(75,0,216)),
// DCB=(BLKSIZE=8800,LRECL=80)
//SMPWRK3 DD UNIT=SYSDA,SPACE=(3200,(75,0,216)),
// DCB=(BLKSIZE=3200,LRECL=80)
//SMPWRK4 DD UNIT=SYSDA,SPACE=(3200,(75,0,216)),
// DCB=(BLKSIZE=3200,LRECL=80)

238 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

//SMPWRK6 DD UNIT=SYSDA,SPACE=(3200,(75,0,216))
//*
//SMPLIST DD SYSOUT=*
//SMPOUT DD SYSOUT=*
//SMPRPT DD SYSOUT=*
//SMPSNAP DD SYSOUT=*
//SMPHOLD DD DUMMY
//SYSPRINT DD SYSOUT=*
//*
//***
//*
//SMPCNTL DD *
SET BDY(targetzone). /* z/OS target zone */
LINK MODULE(DFSLI000)
FROMZONE(imszone) /* IMS target zone */
INTOLMOD(EZAIMSLN)
RC(LINK=00).

Figure 81. Cross zone Lnk IMS application interface

EZAIMSPL JCLIN
//LINKIMS JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A
//**
//* *
//* THIS JOB SERVES AS AN ALTERNATIVE TO THE CROSS ZONE LINK *
//* PERFORMED BY RUNNING EZAIMSCZ. *
//* *
//* UPDATE THE JOB, SYSLMOD AND RESLIB DD CARDS TO SUIT YOUR *
//* INSTALLATION . *
//* *
//**
//LNKIMS EXEC PGM=IEWL,PARM='XREF,LIST,REUS'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=tcpip.v3r1.SEZALINK,DISP=SHR
//RESLIB DD DSN=ims.RESLIB,DISP=SHR
//SYSLIN DD *
 ORDER CMCOPYR
 INCLUDE RESLIB(DFSLI000)
 INCLUDE SYSLMOD(EZAIMSLN)
 ENTRY EZAIMSLN
 MODE RMODE(24) AMODE(31)
 NAME EZAIMSLN(R)
/*

Listener IMS definitions
The following statements define the Listener as an IMS BMP application and the PSB that it uses. Note
that the name ALTPCB is required.

PSB definition
ALTPCB PCB TYPE=TP,MODIFY=YES
 PSBGEN PSBNAME=EZAIMSLN,IOASIZE=1000
 SSASIZE=1000,LANG=ASSEM

TRANSACT MODE=SNGL

Application definition
 APPLCTN PSB=EZAIMSLN,PGMTYPE=BATCH

Chapter 8. IMS Listener samples 239

Sample program explicit-mode
This topic shows an example of an explicit-mode client server program pair. The client program name
is EZAIMSC2; you can find it in SEZAINST(EZAIMSC2). The server program name is EZASVAS2; its IMS
trancode is DLSI102. You can find the sample in SEZAINST(EZASVAS2).

Sample explicit-mode program flow
The client begins execution and obtains the host name and port number from startup parameters. It
then issues SOCKET and CONNECT calls to establish connectivity to the specified host and port. Upon
successful completion of the connect, the client sends the TRM, which tells the Listener to schedule the
specified transaction (DLSI102). The Listener schedules that transaction and places a TIM on the IMS
message queue. Finally, it issues a GIVESOCKET call and waits for the server to take the socket.

When the requested server (EZASVAS2) begins execution, it issues a GU call to obtain the TIM. Using
addressability information from the TIM, it issues INITAPI and TAKESOCKET calls. The server then sends
SERVER MSG #1 to the client.

When the client receives the message, it displays SERVER MSG #1 on stdout and then sends END
CLIENT MSG #2 to the server, and displays a success message on stdout. It then blocks on another
receive() until the server responds.

The server, upon receipt of a message with the characters END as the first 3 characters, sends SERVER
MSG #2 back to the client and closes the socket.

When the client receives this message, it prints SERVER MSG #2 on stdout, closes the socket, and ends.

Sample explicit-mode client program (C language)

/*
 * Include Files.
 */
/* #define RESOLVE_VIA_LOOKUP */
#pragma runopts(NOSPIE NOSTAE)
#define lim 50
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

/*
 * Client Main.
 */
main(argc, argv)
int argc;
char **argv;
{
 unsigned short port; /* port client will connect to */
 char buf ??(lim??); /* sned receive buffers 0 -3 */
 char buf1 ??(lim??);
 char buf2 ??(lim??);
 char buf3 ??(lim??);

 struct hostent *hostnm; /* server host name information */
 struct sockaddr_in server; /* server address */
 int s; /* client socket */

 /*
 * Check Arguments Passed. Should be hostname and port.
 */
 if (argc != 3)
 {
 /* fprintf(stderr, "Usage: %s hostname port\n", argv[0]); */
 printf("Usage: %s hostname port\n", argv [0]);
 exit(1);
 }

 printf("Usage: %s hostname port\n", argv [0]);
 /*
 * The host name is the first argument. Get the server address.
 */
 hostnm = gethostbyname(argv[1]);
 if (hostnm == (struct hostent *) 0)
 {

240 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 /* fprintf(stderr, "Gethostbyname failed\n"); */
 printf("Gethostbyname failed\n");
 exit(2);
 }

 /*
 * The port is the second argument.
 */
 port = (unsigned short) atoi(argv[2]);

 /*
 * Put a message into the buffer.
 */

 strcpy(buf,"2000*TRNREQ*DLSI102 ");

 /*
 * Put the server information into the server structure.
 * The port must be put into network byte order.
 */
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

 /*
 * Get a stream socket.
 */
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 tcperror("Socket()");
 exit(3);
 }

 /*
 * Connect to the server.
 */
 if (connect(s, (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("Connect()");
 exit(4);
 }

 if (send(s, buf, sizeof(buf), 0) < 0)
 {
 tcperror("Send()");
 exit(5);
 }

 printf("send one complete\n");

 /*
 * The server sends message #1. Receive it into buffer1
 */

 if (recv(s, buf1, sizeof(buf1), 0) < 0)
 {
 tcperror("Recv()");
 exit(6);
 }

 printf("receive one complete\n");

 printf(buf1,"\n");
 /* fprintf(stdout,buf1,"\n"); */

 /*
 * Put end message into the buffer.
 */

 strcpy(buf2, "END CLIENT MESSAGE #2 ");

 if (send(s, buf2, sizeof(buf2), 0) < 0)
 {
 tcperror("Send()");
 exit(7);
 }

 printf("send two complete\n");

 /*
 * The server sends back message #2. Receive it into buffer 2.
 */
 if (recv(s, buf3, sizeof(buf3), 0) < 0)
 {
 tcperror("Recv()");
 exit(8);
 }

 printf("receive two complete\n");

 /* fprintf(stdout,buf3,"\n"); */
 printf(buf3,"\n");

Chapter 8. IMS Listener samples 241

 /*
 * Close the socket.
 */
 close(s);

 printf("Client Ended Successfully\n");
 exit(0);

}

Figure 82. Sample C client to drive IMS Listener

Sample explicit-mode server program (Assembly language)

EZASVAS2 CSECT ENTRY POINT
 USING EZASVAS2,BASE ADDRESSABILITY
 SAVE (14,12) SAVE DL/I REGS
 LR BASE,15
 ST R13,SAVEAREA+4 SAVE AREA CHAINING
 LA R13,SAVEAREA NEW SAVE AREA
 MVC PSBS(L'PSBS*3),0(1) SAVE PCB LIST
*
* REG 1 CONTAINS PTR TO PCB ADDR LIST
* REG 13 CONTAINS PTR TO DL/I SAVE AREA
* REG 14 CONTAINS PTR DL/I RETURN ADDRESS
* REG 15 CONTAINS PROGRAMS ENTRY POINT
*
 L R2,0(R0,R1) LOAD ADDR OF I/O PCB
*
 USING IOPCB,R2 ADDRESSABILITY
*
 L R3,4(R0,R1) LOAD ADDR OF ALT PCB
*
 USING ALTPCB1,R3 ADDRESSABILITY
*
 L R4,8(R0,R1) LOAD ADDR OF ALT PCB
 LA R4,0(R0,R4) REMOVE HIGH ORDER BIT
*
 USING ALTPCB2,R4 ADDRESSABILITY
*
 LA R5,IOAREAIN
 LA R7,IOAREAOT POINT TO OUTPUT AREA FOR TCPIP
*
GUCALL DS 0H GET UNIQUE CALL

* Get Transaction-initiation message containing Sockets data *

 CALL ASMTDLI,(GUFUNCT,(2),(5)),VL GET TIM
 CLC STATUS(L'STATUS),=CL2'QC' IF NO MESSAGES
 BE GOBACK RETURN TO IMS
* ELSE NEXT INSTR
 CLC STATUS(L'STATUS),=CL2' ' IF BLANK OK
 BNE ERRRTN SOME WRONG HERE
* ELSE NEXT INSTR
*
 XR R6,R6 CLEAR REG
 BAL R6,INITAPI GO INSERT SEGMENT
 B GUCALL SET RETURN ADDRESS
*
*

242 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

INITAPI DS 0H
* Set up for INITAPI
 MVC TCPNAME(L'TCPNAME),TIMTCPAS TCP Address space
 MVC ASDNAME(L'ASDNAME),TIMSAS Server address space
 MVC SUBTASK(L'SUBTASK),TIMSTD Server task id
* Set up for takeSOCKET
 MVC NAME(L'NAME),TIMLAS Listener address space
 MVC TASK(L'TASK),TIMLTD Listener task id
 MVC S(L'S),TIMSD Socket descriptor
*
 XC ERRNO(L'ERRNO),ERRNO
 XC RETCODE(L'RETCODE),RETCODE
* EX 0,*
**
*
* Issue INITAPI *
**
*
 CALL EZASOKET,
(INITFUNC,MAXSOC,IDENT,SUBTASK, X
 MAXSNO,ERRNO,RETCODE),VL
 L R9,RETCODE
 LTR R9,R9
 BNM TAKESOC
*
INITERR DC CL21'INITAPI COMMAND ERROR'
*
TAKESOC DS 0H
**
*
* Issue takeSOCKET *
**
*
 CALL EZASOKET,(TAKEFUNC,S,CLIENT,ERRNO,RETCODE),VL
*
 L R9,RETCODE
 LTR R9,R9
 BNM SENDTEXT
*
TAKERR DC CL16'TAKESOCKET ERROR'
*Set up to send "SERVER MSG #1"
SENDTEXT DS 0H
*
 MVC S(L'S),RETCODE+2
 XC BUF(LENG),BUF
 MVC BUF(13),=CL13'SERVER MSG #1'
*Translate to ASCII, if necessary
* CALL EZACIC04,(BUF,LENGTH),VL

* Send "SERVER MSG #1" *

 CALL EZASOKET,
(SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X
 VL
 L R9,RETCODE
 LTR R9,R9
 BNM RECVTEXT
*
SENDERR1 DC CL16'SEND ERROR' Abend on error

Chapter 8. IMS Listener samples 243

RECVTEXT DS 0H
**
*
* Receive client message #2
*
**
*
 CALL EZASOKET,
(RECVFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X
 VL
* Translate to EBCDIC if necessary
* CALL EZACIC05,(BUF,LENGTH),VL
*
 L R9,RETCODE
 LTR R9,R9
 BNM CHECKTXT
*
 DC CL16'RECEIVE ERROR' Abend on error
*
CHECKTXT DS 0H
*
 CLC BUF(3),=CL3'END' Test for end of message
 BNE RECVTEXT If not eom, read again
*
* Set up to send shutdown message
SENDEND DS 0H
*
 XC BUF(LENG),BUF
 MVC BUF(13),=CL13'SERVER MSG #2'
* Translate to ASCII if necessary
* CALL EZACIC04,(BUF,LENGTH),VL

* Send "SERVER MSG #2" to indicate shutdown *

 CALL EZASOKET,
(SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X
 VL
 L R9,RETCODE
 LTR R9,R9
 BNM SOCKCLOS
*
SENDERR2 DC CL16'SEND ERROR' Abend on error
*
SOCKCLOS DS 0H

* Close the socket *

 CALL EZASOKET,(CLOSFUNC,S,ERRNO,RETCODE),VL
*
 L R9,RETCODE
 LTR R9,R9
 BNM TERMAPI
*
CLOSERR DC CL16'CLOSE ERROR'
*
TERMAPI DS 0H

* Terminate the API *

244 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 CALL EZASOKET,(TERMFUNC),VL
*
PROCTCP DS 0H Talk to TCPIP Client
* AND ALTERNATE
* SUCESSFUL MSG
 XR R9,R9 CLEAR REG
 LA R9,OTLEN LOAD LENGTH
 STH R9,OTLTH STORE LEN THERE
 XC OTRSV(L'OTRSV),OTRSV CLEAR RESERVE DATA
 MVC OTMSG(L'OTMSG),DCINMSG MOVE IN MSG
 MVC OTLITDT(L'OTLITDT),DCDATE MOVE IN DATE
 MVC OTLITIME(L'OTLITIME),DCTIME MOVE IN TIME
 UNPK OTDATE,CDATE MAKE TIME & DATE
 OI OTDATE+7,X'F0' EBCDIC
 UNPK OTTIME,CTIME
 OI OTTIME+7,X'F0'
 XR R9,R9 GET READY
 L R9,INPUTMSN INPUT COUNT
 CVD R9,DLBWORK INPUT COUNT
 UNPK OTINPUTN,DLBWORK INPUT COUNT
 OI OTINPUTN+7,X'F0' FIX SIGN
 MVC OTFILL(L'OTFILL),=28X'40' FILL CHAR
 MVC OTLTERM(L'OTLTERM),LTERMN ADD TERMINAL
*
*
 CALL ASMTDLI,(ISRTFUNCT,(3),(7),,USER1),VL
*
 XC IOAREAOT(L'IOAREAOT),IOAREAOT
 BR R6
*
ERRRTN DS 0H SOME WRONG HERE
*
 L R13,4(R13)
 RETURN (14,12),RC=8 RELOAD DL/I REGS & RETURN
* ERROR
GOBACK DS 0H RETURN TO IMS
*
 L R13,4(R13)
 RETURN (14,12),RC=0 RELOAD DL/I REGS & RETURN
*
 DS 0D
PSBS DS 3F
 SPACE 1
BASE EQU 12
RC EQU 15
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13

Chapter 8. IMS Listener samples 245

R14 EQU 14
R15 EQU 15
 SPACE 1
*
 DS 0F
SAVEAREA DC 18F'0'
*
GUFUNCT DC CL4'GU ' GET UNIQUE CALL
GNFUNCT DC CL4'GN ' GET NEXT
PURGFUNCT DC CL4'PURG' PURGE CALL
ISRTFUNCT DC CL4'ISRT' INSERT CALL
BADCALL DC CL8'BAD CALL' BAD LIT
ERROPT DC F'0' 1=nodump 0=dump
*
DCINMSG DC CL26' INPUT MESSAGE SUCESSFUL '
DCDATE DC CL6' DATE '
DCTIME DC CL6' TIME '
USER1 DC CL8'USER1 '
USER2 DC CL8'USER2 '
WTOR DC CL8'WTOR '
*
INITFUNC DC CL16'INITAPI'
TAKEFUNC DC CL16'TAKESOCKET'
SENDFUNC DC CL16'SEND'
RECVFUNC DC CL16'RECV'
CLOSFUNC DC CL16'CLOSE'
TERMFUNC DC CL16'TERMAPI'
SELEFUNC DC CL16'SELECT'
*
WORKTCPIP DC CL27'TCPIP WORK DATA BEGINS HERE'
APITYPE DC AL2(2)
MAXSOC DC AL2(MAX)
MAX EQU 50
MAXSNO DS F'00'
*
IDENT DS 0CL16
TCPNAME DS CL8
ASDNAME DS CL8
*
CLIENT DS 0CL38
DOMAIN DC F'2'
NAME DS CL8
TASK DS CL8
RESERVED DS 20B'0'
*
SUBTASK DS CL8
ERRNO DS F
RETCODE DS F
FLAGS DC F'0'
NBYTE DC F'50'
BUF DS CL(LENG)
LENG EQU 50
LENGTH DC AL4(LENG)
TIMEOUT DS 0D
SECONDS DS F
MILLISEC DS F
RSNDMASK DS CL(MAX)
WSNDMASK DS CL(MAX)
ESNDMASK DS CL(MAX)

246 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RRETMASK DS CL(MAX)
WRETMASK DS CL(MAX)
ERETMASK DS CL(MAX)
S DS H
*
 DS 0D
DLBWORK DS D
 DS 0F
IOAREAIN DS 0CL56 I/O AREA INPUT
TIMLEN DS H Length of trans init msg
TIMRSV DS H reserved set to zeros
TIMID DS CL8 LISTENER ID set to LISTNR
TIMLAS DS CL8 LISTENER addr space name
TIMLTD DS CL8 LISTENER taskid for takesocket
TIMSAS DS CL8 SERVER addr space name
TIMSTD DS CL8 SERVER TASK ID user in initapi
TIMSD DS H socket given in LISTENER used
in
* tasksocket
TIMTCPAS DS CL8 TCPIP addr space name
TIMDT DS H Data type of client
* ASCII(0) or EBCDIC(1)
 DS 0F
IOAREAOT DS 0CL119 I/O AREA OUTPUT
OTLTH DS BL2
OTRSV DS BL2
OTLTERM DS CL8
OTINPUTN DS CL8
OTMSG DS CL25
OTLITDT DS CL6
OTDATE DS CL8
OTLITIME DS CL6
OTTIME DS CL8
OTFILL DS CL28
OTLEN EQU (*-IOAREAOT)
*
IOPCB DSECT I/O AREA
LTERMN DS CL8 LOGICAL TERMINAL NAME
 DS CL2 RESERVED FOR IMS
STATUS DS CL2 STATUS CODE
CDATE DS PL4 CURRENT DATE YYDDD
CTIME DS PL4 CURRENT TIME HHMMSST
INPUTMSN DS BL4 SEQUENCE NUMBER
MSGOUTDN DS CL8 MESSAGE OUT DESC NAME
USERID DS CL8 USER ID OF SOURCE
*
ALTPCB1 DSECT ALTERNATE PCB
ALTERM1 DS CL8 DESTINATION NAME
 DS CL2 RESERVED FOR IMS
ALSTAT1 DS CL2 STATUS CODE
*
ALTPCB2 DSECT ALTERNATE PCB
ALTERM2 DS CL8 DESTINATION NAME
 DS CL2 RESERVED FOR IMS
ALSTAT2 DS CL2 STATUS CODE
*
 END

Figure 83. Sample assembler IMS server

Chapter 8. IMS Listener samples 247

Sample program implicit-mode
The topic shows an example of an implicit-mode client server program pair. The client program name is
EZAIMSC1; you can find it in hlq.SEZAINST(EZAIMSC1). The server program name is EZASVAS1; its IMS
trancode is DLSI101. The sample program is located in hlq.SEZAINST(EZASVAS1). When link editing the
sample program, module EZAIMSAS should be included from the SEZALOAD target library.

Sample implicit-mode program flow
The client begins execution and obtains the host name and port number from the startup parameters. It
then issues SOCKET and CONNECT calls to establish connectivity to the specified host and port. Upon
successful completion of the CONNECT, the client sends the TRM, which tells the Listener to schedule the
specified transaction (DLSI101). Because implicit-mode protocol requires that all input data segments
be transmitted before the server application is scheduled, the client follows the TRM with 2 segments
of application data and an end-of-message (EOM) segment. The Listener schedules DLSI101 and places
a TIM on the IMS message queue, followed by the 2 segments of application data. Finally, the Listener
issues a GIVESOCKET call and waits for the server to take the socket.

When the requested server (EZASVAS1) begins execution, it issues a GU call to ASMADLI. Behind the
scenes, the Assist module issues its own GU and retrieves the TIM from the IMS message queue.
Using addressability information from the TIM, it issues INITAPI and takeSOCKET calls, which establish
connectivity with the client.

Once connectivity is established, the Assist module issues a GN to the IMS message queue, which returns
the first segment of application data sent by the client. This data is returned to the server mainline.
(Thus, to the server mainline, the first segment of application data is returned in response to its GU.) In
the sample program, the first segment of application data is the data record: THIS IS FIRST TEXT
MESSAGE SEND TO SERVER. This record is echoed back to the client by means of an IMS ISRT call to
ASMADLI. The IMS Assist module intercepts the ISRT and issues a TCP/IP write() to echo the segment
back to the client. The server mainline then issues a GN ASMADLI (which the Assist module intercepts
and executes another GN ASMTDLI) to receive the second segment of user data. This segment is also
echoed back to the client, using an IMS ISRT call, which the Assist module intercepts and replaces with a
TCP/IP write() to the client.

After the second client data segment, the message queue contains an EOM segment, denoting the client's
end-of-message. When the server has echoed the second input segment to the client, it issues another
GN to ASMADLI. ASMADLI receives an end-of-message indication from the message queue and passes a
QD status code back to the server mainline.

At this point, the server mainline has completed processing that message and issues a GU to see whether
another message has arrived for that trancode. This GU triggers the Assist module to send a final CSMOKY
message to the client, indicating successful completion. It then issues another GU to the IMS message
queue to determine whether another message for that trancode has been queued. If so, the server
program repeats itself; if not, the server issues a GOBACK and ends.

Sample implicit-mode client program (C language)

/*
 * Include Files.
 */
/* #define RESOLVE_VIA_LOOKUP */
#pragma runopts(NOSPIE NOSTAE)
#define lim 119
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

/*
 * Client Main.
 */
main(argc, argv)
int argc;
char **argv;

248 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

{
 unsigned short port; /* port client will connect to */
 struct sktmsg
 {
 short msglen;
 short msgrsv;
 char msgtrn??(8??);
 char msgdat??(lim??);
 } msgbuff;
 struct datmsg
 {
 short datlen;
 short datrsv;
 char datdat??(lim??);
 } datbuff;

 char buf ??(lim??); /* send receive buffer */

 struct hostent *hostnm; /* server host name information */
 struct sockaddr_in server; /* server address */
 int s; /* client socket */
 int len; /* length for send */

 /*
 * Check Arguments Passed. Should be hostname and port.
 */
 if (argc != 3)
 {
 printf("Invalid parameter count\n");
 exit(1);
 }

 printf("Usage: %s program name\n",argv??(0??));

 /*
 * The host name is the first argument. Get the server address.
 */

 printf("Usage: %s host name\n",argv??(1??));

 hostnm = gethostbyname(argv[1]);
 if (hostnm == (struct hostent *) 0)
 {
 printf("Gethostbyname failed\n");
 exit(2);
 }

 /*
 * The port is the second argument.
 */

 printf("Usage: %s port name\n",argv??(2??));

 port = (unsigned short) atoi(argv[2]);

 /*
 * Put the server information into the server structure.
 * The port must be put into network byte order.
 */
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

 /*
 * Get a stream socket.
 */
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 tcperror("Socket()");
 exit(3);
 }

 /*
 * Connect to the server.
 */
 if (connect(s, (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("Connect()");
 exit(4);
 }
 /*
 * Put a message into the buffer.
 */

 msgbuff.msgdat??(0??)='\0';
 msgbuff.msgrsv = 0;
 msgbuff.msglen = 20;
 strncat(msgbuff.msgtrn,"*TRNREQ*",
 lim-strlen(msgbuff.msgdat)-1);
 strncat(msgbuff.msgdat,"DLSI101 ",
 lim-strlen(msgbuff.msgdat)-1);
 len=20;

Chapter 8. IMS Listener samples 249

 if (send(s, (char *)&msgbuff, len, 0) < 0)
 {
 tcperror("Send()");
 exit(5);
 }

 printf("\n");
 printf(msgbuff.msgdat);
 printf("send one complete\n");

 /*
 * Put a text message into the buffer.
 */
 datbuff.datdat??(0??)='\0';
 datbuff.datlen = 46;
 datbuff.datrsv = 0;
 strncat(datbuff.datdat,"THIS IS FIRST TEXT MESSAGE SEND TO SERVER ",
 lim-strlen(datbuff.datdat)-1);
 len=46;

 if (send(s, (char *)&datbuff, len, 0) < 0)
 {
 tcperror("Send()");
 exit(6);
 }

 printf("\n");
 printf(datbuff.datdat);
 printf("\n");
 printf("send for first text message complete\n");

 /*
 * Put a text message into the buffer.
 */

 datbuff.datdat??(0??)='\0';
 datbuff.datlen = 47;
 strncat(datbuff.datdat,"THIS IS 2ND TEXT MESSAGE SENDING TO SERVER",
 lim-strlen(datbuff.datdat)-1);
 len=47;

 if (send(s, (char *)&datbuff, len, 0) < 0)
 {
 tcperror("Send()");
 exit(7);
 }

 printf("\n");
 printf(datbuff.datdat);
 printf("\n");
 printf("send for 2nd test message complete\n");

 /*
 * Put a end message into the buffer.
 */

 datbuff.datdat??(0??)='\0';
 datbuff.datlen = 4;
 strncpy(datbuff.datdat," ",lim);
 len=4;

 if (send(s, (char *)&datbuff, len, 0) < 0)
 {
 tcperror("Send()");
 exit(8);
 }

 printf("\n");
 printf(datbuff.datdat);
 printf("\n");
 printf("send for end message complete\n");

 /*
 * The server sends back the same message. Receive it into the
 * buffer.
 */

 strncpy(datbuff.datdat," ",lim);

 if (recv(s,(char *)&datbuff, lim, 0) < 0)
 {
 tcperror("Recv()");
 exit(9);
 }

 printf("receive one text complete\n");
 printf(datbuff.datdat);
 printf("\n");

 /*
 * The server sends back the same message. Receive it into the
 * buffer.
 */

250 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 strncpy(datbuff.datdat," ",lim);

 if (recv(s,(char *)&datbuff, lim, 0) < 0)
 {
 tcperror("Recv()");
 exit(10);
 }

 printf("receive two text complete\n");
 printf(datbuff.datdat);
 printf("\n");

 /*
 * The server sends eof message. Receive it into the
 * buffer.
 */

 strncpy(datbuff.datdat," ",lim);

 if (recv(s,(char *)&datbuff, 4, 0) < 0)
 {
 tcperror("Recv()");
 exit(11);
 }

 printf("receive eof complete\n");
 printf("\n");
 printf(datbuff.datdat);
 printf("\n");

 strncpy(datbuff.datdat," ",lim);

 if (recv(s,(char *)&datbuff, 12, 0) < 0)
 {
 tcperror("Recv()");
 exit(12);
 }

 printf("receive CSMOKY complete\n");
 printf("\n");
 printf(datbuff.datdat);
 printf("\n");

 /*
 * Close the socket.
 */
 close(s);

 printf("Client Ended Successfully\n");
 exit(0);

}

Figure 84. Sample C client to drive IMS Listener

Sample implicit-mode server program (Assembly language)

EZASVAS1 CSECT ENTRY POINT
 USING EZASVAS1,BASE ADDRESSABILITY
 SAVE (14,12) SAVE DL/I REGS
 LR BASE,15
 ST R13,SAVEAREA+4 SAVE AREA CHAINING
 LA R13,SAVEAREA NEW SAVE AREA
 MVC PSBS(L'PSBS*3),0(1) SAVE PCB LIST
*
* REG 1 CONTAINS PTR TO PCB ADDR LIST
* REG 13 CONTAINS PTR TO DL/I SAVE AREA
* REG 14 CONTAINS PTR DL/I RETURN ADDRESS
* REG 15 CONTAINS PROGRAMS ENTRY POINT
*
 L R2,0(R0,R1) LOAD ADDR OF I/O PCB
*
 USING IOPCB,R2 ADDRESSABILITY
*
 L R3,4(R0,R1) LOAD ADDR OF ALT PCB
*
 USING ALTPCB1,R3 ADDRESSABILITY
*
 L R4,8(R0,R1) LOAD ADDR OF ALT PCB
 LA R4,0(R0,R4) REMOVE HIGH ORDER BIT
*
 USING ALTPCB2,R4 ADDRESSABILITY
*
 LA R5,IOAREAIN
 LA R7,IOAREAOT POINT TO OUTPUT AREA
*
GUCALL DS 0H GET UNIQUE CALL
*

Chapter 8. IMS Listener samples 251

*
 CALL ASMADLI,(GUFUNCT,(2),(5)),VL
*
 CLC STATUS(L'STATUS),=CL2'QC' IF NO MESSAGES
 BE GOBACK RETURN TO IMS
* ELSE NEXT INSTR
 CLC STATUS(L'STATUS),=CL2' ' IF BLANK OK
 BNE ERRRTN SOME WRONG HERE
* ELSE NEXT INSTR
*
 XR R6,R6 CLEAR REG
 LA R6,GNCALL SET RETURN ADDRESS
 BAL R6,ISRTCALL GO INSERT SEGMENT
*
GNCALL DS 0H GET NEXT CALL
*
*
 CALL ASMADLI,(GNFUNCT,(2),(5)),VL
*
 CLC STATUS(L'STATUS),=CL2'QD' IF NO MORE SEGMENTS
 BE GUCALL RETURN TO IMS
 CLC STATUS(L'STATUS),=CL2' ' IF NO MORE SEGMENTS
 BNE ERRRTN SOME WRONG HERE
*
 XR R6,R6 CLEAR REG
 LA R6,GNLOOP SET RETURN ADDRESS
 BAL R6,ISRTCALL GO INSERT SEGMENT
*
GNLOOP B GNCALL
*
ISRTCALL DS 0H INSERT - WRITE TO TERMINAL
* AND ALTERNATE
* SUCESSFUL MSG
 XR R9,R9 CLEAR REG
 LA R9,OTLEN LOAD LENGTH
 STH R9,OTLTH STORE LEN THERE
 XC OTRSV(L'OTRSV),OTRSV CLEAR RESERVE DATA
 MVC OTMSG(L'OTMSG),DCINMSG MOVE IN MSG
 MVC OTLITDT(L'OTLITDT),DCDATE " " DATE
 MVC OTLITIME(L'OTLITIME),DCTIME " " TIME
 UNPK OTDATE,CDATE MAKE TIME & DATE
 OI OTDATE+7,X'F0' EBCDIC
 UNPK OTTIME,CTIME
 OI OTTIME+7,X'F0'
 XR R9,R9 GET READY
 L R9,INPUTMSN INPUT COUNT
 CVD R9,DLBWORK INPUT COUNT
 UNPK OTINPUTN,DLBWORK INPUT COUNT
 OI OTINPUTN+7,X'F0' FIX SIGN
 MVC OTFILL(L'OTFILL),=28X'40' FILL CHAR
 MVC OTLTERM(L'OTLTERM),LTERMN ADD TERMINAL
*
* For LTERM USER1....
*
 CALL ASMADLI,(ISRTFUNCT,(2),(7)),VL
*
* For LTERM USER2....
*
 XC IOAREAOT(L'IOAREAOT),IOAREAOT
 BR R6
*
ERRRTN DS 0H SOME WRONG HERE
*
 L R13,4(R13)
 RETURN (14,12),RC=8 RELOAD DL/I REGS & RETURN
* ERROR
*
GOBACK DS 0H RETURN TO IMS
*
 L R13,4(R13)
 RETURN (14,12),RC=0 RELOAD DL/I REGS & RETURN
*
 DS 0D
PSBS DS 3F
 SPACE 1
BASE EQU 12
RC EQU 15
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

252 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 SPACE 1
*
 DS 0F
SAVEAREA DC 18F'0'
GUFUNCT DC CL4'GU ' GET UNIQUE CALL
GNFUNCT DC CL4'GN ' GET NEXT
PURGFUNCT DC CL4'PURG' PURGE CALL
ISRTFUNCT DC CL4'ISRT' INSERT CALL
BADCALL DC CL8'BAD CALL' BAD LIT
ERROPT DC F'1' 1=NODUMP 2=DUMP
DCINMSG DC CL26' INPUT MESSAGE SUCESSFUL '
DCDATE DC CL6' DATE '
DCTIME DC CL6' TIME '
USER1 DC CL8'USER1 '
USER2 DC CL8'USER2 '
WTOR DC CL8'WTOR '
*
 DS 0D
DLBWORK DS D
 DS 0F
IOAREAIN DS CL119 I/O AREA INPUT
 DS 0F
IOAREAOT DS 0CL119 I/O AREA OUTPUT
OTLTH DS BL2
OTRSV DS BL2
OTLTERM DS CL8
OTINPUTN DS CL8
OTMSG DS CL25
OTLITDT DS CL6
OTDATE DS CL8
OTLITIME DS CL6
OTTIME DS CL8
OTFILL DS CL46
OTLEN EQU (*-IOAREAOT)
*
IOPCB DSECT I/O AREA
LTERMN DS CL8 LOGICAL TERMINAL NAME
 DS CL2 RESERVED FOR IMS
STATUS DS CL2 STATUS CODE
CDATE DS PL4 CURRENT DATE YYDDD
CTIME DS PL4 CURRENT TIME HHMMSST
INPUTMSN DS BL4 SEQUENCE NUMBER
MSGOUTDN DS CL8 MESSAGE OUT DESC NAME
USERID DS CL8 USER ID OF SOURCE
*
ALTPCB1 DSECT ALTERNATE PCB
ALTERM1 DS CL8 DESTINATION NAME
 DS CL2 RESERVED FOR IMS
ALSTAT1 DS CL2 STATUS CODE
*
ALTPCB2 DSECT ALTERNATE PCB
ALTERM2 DS CL8 DESTINATION NAME
 DS CL2 RESERVED FOR IMS
ALSTAT2 DS CL2 STATUS CODE
*
*
 END

Figure 85. Sample assembler IMS server

Sample program - IMS MPP client
This information assumes that the IMS system is the server; however, some applications require that the
server be a TCP/IP host. The following information shows an example of a program in which the client is
an IMS MPP, and the server is a TCP/IP host.

For simplicity, we have coded both client and server to execute on an MVS host. The client (EZAIMSC3)
is initiated by a 3270-driven IMS MPP; the server (EZASVAS3) is a TSO job which is already running when
the client starts.

The samples are located in hlq.SEZAINST(EZAIMSC3) and hlq.SEZAINST(EZASVAS3).

Sample IMS MPP client program flow
A TSO Submit command is used to start the server. Once started, it executes the TCP/IP connection
sequence for an iterative server (INITAPI, SOCKET, BIND, LISTEN, SELECT, and ACCEPT) and then waits
for the client to request connection.

Note that the BIND call returns a socket descriptor which is then used to listen for a connection request.
The ACCEPT call also returns a socket descriptor, which is used for the application data connection.
Meanwhile, the original listener socket is available to receive additional connection requests.

Chapter 8. IMS Listener samples 253

The client is started by calling an IMS transaction which, in turn, executes the TCP/IP connection
sequence for a client (INITAPI, SOCKET, and CONNECT).

Upon receiving the connection request from the client, the server issues a READ and waits for the client
to WRITE the initial message. The server contains a READ/WRITE loop which echoes client transmissions
until an "END" message is received. When this message is received, it sets a 'last record' switch, echoes
the end message to the client, and terminates.

Note that in order for the server to terminate, it must close two sockets: one -- the socket on which it
listens for connection requests; the other -- the socket on which the data transfers took place.

The client and server both include Write To Operator macros, which allow you to monitor progress through
the application logic flow. At the end of this appendix you will find a sample of the WTO output from the
client and the server.

Sample client program for non-IMS server

EZAIMSC3 CSECT
EZAIMSC3 AMODE ANY
EZAIMSC3 RMODE ANY
 GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION
&TRACE SETB 1 1=TRACE ON 0=TRACE OFF
 GBLB &SUBTR ASSEMBLER VARIABLE TO CONTROL SUBTRACE
&SUBTR SETB 0 1=SUBTRACE ON 0=SUBTRACE OFF

* *
* MODULE NAME: EZAIMSC3 *
* *
* Copyright: Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5694-A01 *
* *
* Copyright IBM Corp. 2009 *
* *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by *
* GSA ADP Schedule Contract with IBM Corp. *
* *
* Status: CSV1R11 *
* *
* MODULE FUNCTION: Sample program of an IMS MPP TCP client. This *
* module connects with a TCP/IP server and *
* exchanges msgs with it. The number of msgs *
* exchanged is determined by a constant and *
* the length of the messages is also determined *
* by a constant. *
* Note: If an error occurs during processing, this *
* module will send an error message to the system *
* console and then Abends0c1. *
* *
* LANGUAGE: Assembler *
* *
* ATTRIBUTES: Reusable *
* *
* INPUT: None *
* *
* Change History: *
* *
* Flag Reason Release Date Origin Description *
* ---- -------- -------- ------ -------- --------------------------- *
* $Q1= D316.15 CSV1R5 020604 BKELSEY : Support 64K sockets *
* $F1= RBBASE CSV1R11 080612 Herr : Cleaned up >72 lines *
* *

SOC0000 DS 0H
 USING *,R15 Tell assembler to use reg 15
 B SOC00100 Branch to startup address
 DC CL16'IMSTCPCLEYECATCH'
BUFLEN EQU 1000 Set length of I/O buffers
R4BASE DC A(SOC0000+4096)

* Control Variables for this program *

SOCMSGN DC F'005' Number of messages to be exchanged
SOCMSGL DC F'200' Length of messages to be exchanged
SERVPORT DC H'5000' Port Address of Server
SOCTASK DC F'0' Task number for this client
SERVLEN DC H'0' Length of server's name
SERVNAME DC CL24' ' Internet name of server
SENDINT DC CL8'00000010' Delay interval between sends

* Constants used for call functions *

254 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

INITAPI DC CL16'INITAPI'
GETHSTID DC CL16'GETHOSTID'
SOCKET DC CL16'SOCKET'
GHBN DC CL16'GETHOSTBYNAME'
CONNECT DC CL16'CONNECT'
READ DC CL16'READ'
WRITE DC CL16'WRITE'
CLOSE DC CL16'CLOSE'
TERMAPI DC CL16'TERMAPI'

* Beginning of program execution statements *

SOC00100 DS 0H Beginning of program
 STM R14,R12,12(R13) Save callers registers
 LR R3,R15 Move base reg to R3
 L R4,R4BASE Add R4 as second base reg
 DROP R15 Tell assembler to drop R15 as base
 USING SOC0000,R3,R4 Tell assembler to use R3 and R4 as X
 base registers
 LR R7,R13 Save address of previous save area
 LA R12,SOCSTG Move address of program stg to R12
 LA R13,SOCSTGL Move length of program stge to R13
 SR R14,R14 Clear R14
 SR R15,R15 Clear R15
 MVCL R12,R14 Clear program storage
 LA R13,SOCSTG Move address of program stg to R13
 USING SOCSTG,R13 Tell Assembler about storage
 ST R7,SOCSAVEL Save address of lower save area
 ST R13,8(R7) Complete save area chain
SOC00200 DS 0H
*
* Build message for console
*
 MVC MSG1D,MSG1C Initialize first part of message
 L R0,SOCTASK Get task number
 CVD R0,DWORK Convert task number to decimal
 UNPK MSGTD,DWORK+5(3) Convert decimal to character
 OI MSGTD+4,X'F0' Clear sign
 MVC MSG2D,MSG2CS Move 'Started' to message
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 MVC WTOLIST,WTOPROT Move prototype WTO to list form
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
*
* Issue INITAPI Call to connect to interface
*
 MVC SOCTASKC(3),=CL3'SOC' Build Task Identifier
 MVC SOCTASKC+3(5),MSGTD
 MVC MSG2D,MSG2C1 Move 'INITAPI'to message
 MVC MAXSOC,=AL2(50) Initialize MAXSOC field
 MVC ASTCPNAM,=CL8'TCPV3 ' Initialize TCP Name
 MVC ASCLNAME,=CL8'TCPCLINT' Initialize AS Name
*
 CALL EZASOKET, X
 (INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO, X
 RETCODE), X
 VL Specify variable parameter list
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE01
* TRACE ENTRY FOR INITAPI TRACE TYPE = 1
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE01 ANOP
*
* Issue GETHOSTID Call to obtain internet address of host
*
 MVC MSG2D,MSG2C8 Move 'GTHSTID'to message
*
 CALL EZASOKET, Issue GETHOSTID Call X
 (GETHSTID,SERVIADD), X
 VL Specify Variable parameter list
*
 AIF (NOT &TRACE).TRACE08
* TRACE ENTRY FOR GETHOSTID TRACE TYPE = 8
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE08 ANOP
*
* Issue SOCKET Call to obtain a socket descriptor
*
 MVC MSG2D,MSG2C2 Move 'SOCKET' to message
 MVC AF,=F'2' Address Family = Internet
 MVC SOCTYPE,=F'1' Type = Stream Sockets
 XC PROTO,PROTO Clear protocol field

Chapter 8. IMS Listener samples 255

*
 CALL EZASOKET, Issue SOCKET Call X
 (SOCKET,AF,SOCTYPE,PROTO,ERRNO,RETCODE), X
 VL Specify variable parameter list
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE02
* TRACE ENTRY FOR SOCKET TRACE TYPE = 2
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE02 ANOP
*
* Get socket descriptor number
*
 L R6,RETCODE Descriptor number returned
 STH R6,SOCDESC Save it
*
* Issue CONNECT Command to Connect to Server
*
 MVC SSOCAF,=H'2' Set AF=INET
 MVC SSOCPORT,SERVPORT Move Port Number
 MVC SSOCINET,SERVIADD Move Internet Address of Server
 MVC MSG2D,MSG2C4 Move 'CONNECT' to message
*
 CALL EZASOKET, Issue CONNECT Call X
 (CONNECT,SOCDESC,SERVSOC,ERRNO,RETCODE), X
 VL Specify variable parameter list
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE04
* TRACE ENTRY FOR CONNECT TRACE TYPE = 4
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE04 ANOP
*
* Send initial message to server
*
 MVC BUFFER(L'MSG1),MSG1 Move Message to Buffer
 LA R6,L'MSG1 Get length of message
 ST R6,DATALEN Put length in data field
 MVC MSG2D,MSG2C5 Move 'WRITE' to message
*
 CALL EZASOKET, Issue WRITE Call X
 (WRITE,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X
 VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE05
* TRACE ENTRY FOR WRITE TRACE TYPE = 5
 MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
 MVC MSG3D,ERR3C ' RETCODE= '
 MVI MSG3S,C'+' Move sign
 L R6,RETCODE Get return code value
 CVD R6,DWORK Convert it to decimal
 UNPK MSG4D,DWORK+4(4) Unpack it
 OI MSG4D+6,X'F0' Correct the sign
 LA R6,MSG Put text address in R6
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE05 ANOP
*
* Read response to initial message
*
 MVC MSG2D,MSG2C6 Move 'READ' to message
 LA R6,L'BUFFER Get length of buffer
 ST R6,DATALEN Put length in data field
*
 CALL EZASOKET, Issue READ Call X
 (READ,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X
 VL Specify variable parameter list
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE06
* TRACE ENTRY FOR READ TRACE TYPE = 6
 MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
 MVC MSG3D,ERR3C ' RETCODE= '
 MVI MSG3S,C'+' Move sign
 L R6,RETCODE Get return code value
 CVD R6,DWORK Convert it to decimal
 UNPK MSG4D,DWORK+4(4) Unpack it
 OI MSG4D+6,X'F0' Correct the sign

256 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 LA R6,MSG Put text address in R6
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE06 ANOP
*
* Send second message to server
*
 MVC BUFFER(L'MSG2),MSG2 Move Message to Buffer
 LA R6,L'MSG2 Get length of message
 ST R6,DATALEN Put length in data field
 MVC MSG2D,MSG2C5 Move 'WRITE' to message
*
 CALL EZASOKET, Issue WRITE Call X
 (WRITE,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X
 VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE15
* TRACE ENTRY FOR WRITE TRACE TYPE = 5
 MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
 MVC MSG3D,ERR3C ' RETCODE= '
 MVI MSG3S,C'+' Move sign
 L R6,RETCODE Get return code value
 CVD R6,DWORK Convert it to decimal
 UNPK MSG4D,DWORK+4(4) Unpack it
 OI MSG4D+6,X'F0' Correct the sign
 LA R6,MSG Put text address in R6
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE15 ANOP
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
*
* Read response to second message
*
 MVC MSG2D,MSG2C6 Move 'READ' to message
*
 CALL EZASOKET, Issue READ Call X
 (READ,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X
 VL Specify variable parameter list
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
*
 AIF (NOT &TRACE).TRACE16
* TRACE ENTRY FOR READ TRACE TYPE = 6
 MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
 MVC MSG3D,ERR3C ' RETCODE= '
 MVI MSG3S,C'+' Move sign
 L R6,RETCODE Get return code value
 CVD R6,DWORK Convert it to decimal
 UNPK MSG4D,DWORK+4(4) Unpack it
 OI MSG4D+6,X'F0' Correct the sign
 LA R6,MSG Put text address in R6
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE16 ANOP
*
* Send End message to server
*
 MVC BUFFER(L'ENDMSG),ENDMSG Move end message to buffer
 LA R6,L'ENDMSG Get length of message
 ST R6,SOCMSGL Put length in length field
 MVC MSG2D,MSG2C5 Move 'WRITE' to message
*
 CALL EZASOKET, Issue WRITE Call X
 (WRITE,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X
 VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE25
* TRACE ENTRY FOR WRITE TRACE TYPE = 5
 MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
 MVC MSG3D,ERR3C ' RETCODE= '
 MVI MSG3S,C'+' Move sign
 L R6,RETCODE Get return code value
 CVD R6,DWORK Convert it to decimal
 UNPK MSG4D,DWORK+4(4) Unpack it
 OI MSG4D+6,X'F0' Correct the sign
 LA R6,MSG Put text address in R6
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE25 ANOP
*
* Read response to end message
*
 MVC MSG2D,MSG2C6 Move 'READ' to message

Chapter 8. IMS Listener samples 257

*
 CALL EZASOKET, Issue READ Call X
 (READ,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X
 VL Specify variable parameter list
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE26
* TRACE ENTRY FOR READ TRACE TYPE = 6
 MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
 MVC MSG3D,ERR3C ' RETCODE= '
 MVI MSG3S,C'+' Move sign
 L R6,RETCODE Get return code value
 CVD R6,DWORK Convert it to decimal
 UNPK MSG4D,DWORK+4(4) Unpack it
 OI MSG4D+6,X'F0' Correct the sign
 LA R6,MSG Put text address in R6
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE26 ANOP
*
* Close socket
*
 MVC MSG2D,MSG2C7 Move 'CLOSE' to message
*
 CALL EZASOKET, Issue CLOSE Call X
 (CLOSE,SOCDESC,ERRNO,RETCODE), X
 VL Specify variable parameter list
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE07
* TRACE ENTRY FOR CLOSE TRACE TYPE = 7
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE07 ANOP
*
* Terminate Connection to API
*
 CALL EZASOKET, Issue TERMAPI Call X
 (TERMAPI), X
 VL Specify variable parameter list
*
* Issue console message for task termination
*
 MVC MSG2D,MSG2CE Move 'Ended' to message
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
*
* Return to Caller
*
 L R13,SOCSAVEL
 LM R14,R12,12(R13)
 BR R14
*
* Write error message to operator and ABENDS0C1
*
SOCERR DS 0H Write error message to operator
 MVC ERR1D,MSG1D 'IMSTCPCL, TASK #'
 MVC ERRTD,MSGTD Move task number to message
 MVC ERR2D,MSG2D Call Type
 MVC ERR3D,ERR3C ' RETCODE= '
 MVI ERR3S,C'-' Move sign which is always minus
 MVC ERR5D,ERR5C ' ERRNO= '
 L R6,RETCODE Get return code value
 CVD R6,DWORK Convert it to decimal
 UNPK ERR4D,DWORK+4(4) Unpack it
 OI ERR4D+6,X'F0' Correct the sign
 L R6,ERRNO Get errno value
 CVD R6,DWORK Convert it to decimal
 UNPK ERR6D,DWORK+4(4) Unpack it
 OI ERR6D+6,X'F0' Correct the sign
 LA R6,ERR Put text address in R6
 MVC ERRLEN,=AL2(ERRTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
ABEND DS 0H
 DC H'0' Force ABEND
WTOPROT WTO TEXT=, List form of WTO Macro X
 MF=L
WTOPROTL EQU *-WTOPROT Length of WTO Prototype
MSG1C DC CL17'IMSTCPCL, TASK # '
MSG2CS DC CL8' STARTED'
MSG2CE DC CL8' ENDED '
ERR3C DC CL10' RETCODE= '
ERR5C DC CL8' ERRNO= '
MSG2C1 DC CL8' INITAPI'

258 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

MSG2C2 DC CL8' SOCKET '
MSG2C4 DC CL8' CONNECT'
MSG2C5 DC CL8' WRITE '
MSG2C6 DC CL8' READ '
MSG2C7 DC CL8' CLOSE '
MSG2C8 DC CL8' GTHSTID'
MSG2C35 DC CL8' SYNC '
MSG1 DC CL16'CLIENT MESSAGE 1' First msg to server
MSG2 DC CL16'CLIENT MESSAGE 2' 2nd msg to server
ENDMSG DS 0CL48 End Message for Server
 DC CL3'END' End indicator for SRV1
 DC CL45' ' Pad with blanks
 DS 0D
SOCSTG DS 0F PROGRAM STORAGE
SOCSAVE DS 0F Save Area
SOCSAVE1 DS F Word for high-level languages
SOCSAVEL DS F Address of previous save area
SOCSAVEH DS F Address of next save area
SOCSAV14 DS F Reg 14
SOCSAV15 DS F Reg 15
SOCSAV0 DS F Reg 0
SOCSAV1 DS F Reg 1
SOCSAV2 DS F Reg 2
SOCSAV3 DS F Reg 3
SOCSAV4 DS F Reg 4
SOCSAV5 DS F Reg 5
SOCSAV6 DS F Reg 6
SOCSAV7 DS F Reg 7
SOCSAV8 DS F Reg 8
SOCSAV9 DS F Reg 9
SOCSAV10 DS F Reg 10
SOCSAV11 DS F Reg 11
SOCSAV12 DS F Reg 12
SOCSAV13 DS F Reg 13
MAXSOC DS H Maximum number of sockets for this X
 application
SOCTASKC DS CL8 Character task identifier
SOCDESC DS H Socket Descriptor Number
HISOC DS F Highest socket descriptor available
AF DS F Address family for socket call
SOCTYPE DS F Type of socket
NS DS F New socket number for socket call
SERVAL DS 12F Alias array for server
SERVSOC DS 0F Socket Address of Server
SSOCAF DS H Address Family of Server = 2
SSOCPORT DS H Port number for Server
SSOCINET DS F Internet address for Server
 DC D'0' Reserved
MSG DS 0F Message area
MSGLEN DS H Length of message
MSG1D DS CL17 'IMSTCPCL, TASK #'
MSGTD DS CL5 Task Number
MSG2D DS CL8 Last part of message
MSGE EQU * End of message
MSGTL EQU MSGE-MSG1D Length of message text
MSG3D DS CL10 ' RETCODE = '
MSG3S DS C Sign which is always -
MSG4D DS CL7 Return code
ERR DS 0F Error message area
ERRLEN DS H Length of message
ERR1D DS CL17 'IMSTCPCL, TASK #'
ERRTD DS CL5 Task Number
ERR2D DS CL8 Last part of message
ERR3D DS CL10 ' RETCODE = '
ERR3S DS C Sign which is always -
ERR4D DS CL7 Return code
ERR5D DS CL8 ' ERRNO ='
ERR6D DS CL7 Error number
ERRE EQU * End of message
ERRTL EQU ERRE-ERR1D Length of message text
BUFFER DS CL(BUFLEN) Socket I/O Buffer
DATALEN DS F Length of buffer data
DWORK DS D Double word work area
RECNO DS PL4 Record Number
ERRNO DS F Error number returned from call
RETCODE DS F Return code from call
PROTO DS F Protocol field for socket
ASIDENT DS 0F Address space identifier for initapi
ASTCPNAM DS CL8 Name of TCP/IP Address Space
SERVIADD DS F Internet address for Server
ASCLNAME DS CL8 Our name as known to TCP/IP
WTOLIST DS CL(WTOPROTL) List form of WTO Macro
SOCSTGE EQU * End of Program Storage
SOCSTGL EQU SOCSTGE-SOCSTG Length of Program Storage
 LTORG
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7

Chapter 8. IMS Listener samples 259

R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
GWABAR EQU 13
 END

Figure 86. Sample of IMS program as a client

Sample server program for IMS MPP client

EZASVAS3 CSECT
EZASVAS3 AMODE ANY
EZASVAS3 RMODE ANY
 GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION
&TRACE SETB 1 1=TRACE ON 0=TRACE OFF
 GBLB &SUBTR ASSEMBLER VARIABLE TO CONTROL SUBTRACE
&SUBTR SETB 0 1=SUBTRACE ON 0=SUBTRACE OFF

* *
* MODULE NAME: EZASVAS3 *
* *
* Copyright: Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5694-A01 *
* *
* Copyright IBM Corp. 2009 *
* *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by *
* GSA ADP Schedule Contract with IBM Corp. *
* *
* Status: CSV1R11 *
* *
* MODULE FUNCTION: Test module for Extended Sockets. This module *
* accepts connection request from IMS client *
* program named EZAIMSC3. *
* *
* LANGUAGE: Assembler *
* *
* ATTRIBUTES: Non-reusable *
* *
* Change History: *
* *
* Flag Reason Release Date Origin Description *
* ---- -------- -------- ------ -------- --------------------------- *
* $Q1= D316.15 CSV1R5 020604 BKELSEY : Support 64K sockets *
* $F1= RBBASE CSV1R11 080612 Herr : Cleaned up >72 lines *
* *

SOC0000 DS 0H
 USING *,R15 Tell assembler to use reg 15
 B SOC00100 Branch to startup address
 DC CL14'SERVEREYECATCH'
ASIDENT DS 0F Address Space Identifier for initapi
ASTCPNAM DC CL8'TCPV3 ' Name of TCP/IP Address Space
ASCLNAME DC CL8'CALLSRVER' Our name as known to TCP/IP
TIMEOUT DS 0F Timeout value for select
TIMESEC DC F'180' Timeout value in seconds
TIMEMSEC DC F'0' Timeout value in milliseconds
BUFLEN EQU 1000 Set length of I/O buffers
R4BASE DC A(SOC0000+4096)
SOC00100 DS 0H Beginning of program
 STM R14,R12,12(R13) Save callers registers
 LR R3,R15 Move base reg to R3
 L R4,R4BASE Add R4 as second base reg
 DROP R15 Tell assembler to drop R15 as base
 USING SOC0000,R3,R4 Tell assembler to use R3 and R4 as X
 base registers
 LA R6,SOCSTG Clear program storage
 LA R7,SOCSTGL
 SR R14,R14
 SR R15,R15
 MVCL R6,R14
 ST R13,SOCSAVEH Save address of higher save area
 LA R7,SOCSAVE Complete save area chain
 ST R7,8(R13) Tell caller where our save area is
 LA R13,SOCSAVE Point R13 at our save area
 MVI ENDSW,X'00' Clear end-of-transmission switch
*
* Build message for console
*
 MVC MSG1D,MSG1C Initialize first part of message

260 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 MVC MSGTD,=CL5'00000' Move subtask number from clientid
 MVC MSG2D,MSG2CS Move 'Started' to message
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 MVC WTOLIST,WTOPROT Move prototype WTO to list form
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
*
* Issue INITAPI Call to connect to interface
*
 MVC SOCTASKC,=CL8'TAS00000' Give subtask a name
 MVC MSG2D,MSG2C00 Move 'INITAPI'to message
 MVC MAXSOC,=AL2(50) Initialize MAXSOC parameter
*
 CALL EZASOKET, X
 (INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO, X
 RETCODE), X
 VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE00
* TRACE ENTRY FOR INITAPI TRACE TYPE = 0
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE00 ANOP
*
* Issue SOCKET Call to obtain socket to listen on
*
 MVC MSG2D,MSG2C25 Move 'SOCKET'to message
 MVC AF,=F'2' Initialize AF to '2' (INET)
 MVC SOCTYPE,=F'1' Specify stream sockets
 MVC PROTO,=F'0' Protocol is ignored for stream
*
 CALL EZASOKET, Issue SOCKET CALL X
 (SOCKET,AF,SOCTYPE,PROTO,ERRNO,RETCODE), X
 VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminate
 AIF (NOT &TRACE).TRACE25
* TRACE ENTRY FOR SOCKET TRACE TYPE = 25
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE25 ANOP
 L R0,RETCODE Get descriptor number of socket
 STH R0,LISTSOC Save it
*
* Issue GETHOSTID call to determine our internet address
*
 MVC MSG2D,MSG2C07 Move 'GETHSTID'to message
*
 CALL EZASOKET, Issue GETHOSTID Call X
 (GETHSTID,RETCODE),VL
*
 AIF (NOT &TRACE).TRACE07
* TRACE ENTRY FOR SOCKET TRACE TYPE = 07
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE07 ANOP
 L R0,RETCODE Get internet address of host
 ST R0,SINETADR Save it
*
* Issue BIND call to establish port
*
 MVC MSG2D,MSG2C02 Move 'BIND' to message
 MVC SPORT,=H'5000' Move port number to structure
 MVC SAF,=H'2' Move AF (INET) to structure
*
 CALL EZASOKET, Issue BIND Call X
 (BIND,LISTSOC,SOCKNAME,ERRNO,RETCODE), X
 VL
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
*
 AIF (NOT &TRACE).TRACE02
* TRACE ENTRY FOR BIND TRACE TYPE = 02
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE02 ANOP
*
*

Chapter 8. IMS Listener samples 261

* Issue LISTEN call to establish backlog of connection requests
*
 MVC MSG2D,MSG2C13 Move 'LISTEN' to message
 MVC BACKLOG,=F'5' Set backlog to 5
*
 CALL EZASOKET, Issue LISTEN Call X
 (LISTEN,LISTSOC,BACKLOG,ERRNO,RETCODE),VL
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminate
*
 AIF (NOT &TRACE).TRACE13
* TRACE ENTRY FOR LISTEN TRACE TYPE = 13
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE13 ANOP
*
* Issue SELECT call to wait on connection request
*
 MVC MSG2D,MSG2C19 Move 'SELECT' to message
 MVC SELSOC,=F'31' Maximum number of sockets
 MVC WSNDMASK,=F'0' Not checking for writes
 MVC ESNDMASK,=F'0' Not checking for exceptions
 LA R0,1 Put 1 in rightmost position of R0
 LH R1,LISTSOC Put listener socket number in R1
 SLL R0,0(R1) Create mask for read
 ST R0,RSNDMASK Put value in mask field
*
 CALL EZASOKET, Issue SELECT Call X
 (SELECT,SELSOC,TIMEOUT,RSNDMASK,WSNDMASK,ESNDMASK, X
 RRETMASK,WRETMASK,ERETMASK,ERRNO,RETCODE), X
 VL
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
*
 AIF (NOT &TRACE).TRACE19
* TRACE ENTRY FOR SELECT TRACE TYPE = 19
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE19 ANOP
*
* Issue ACCEPT call to accept a new connection
*
 MVC MSG2D,MSG2C01 Move 'ACCEPT' to message
 MVC NS,=F'4' Use socket 4 for connection socket
*
 CALL EZASOKET, Issue ACCEPT Call X
 (ACCEPT,LISTSOC,SOCKNAME,ERRNO,RETCODE), X
 VL
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
*
 AIF (NOT &TRACE).TRACE01
* TRACE ENTRY FOR ACCEPT TRACE TYPE = 01
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE01 ANOP
 L R0,RETCODE Get descriptor number of new socket
 STH R0,CONNSOC Save it for future use
*
* Issue READ call to get first message from client
*
 LA R6,L'BUFFER Get length of buffer
 ST R6,DATALEN Put length in data field
 MVC MSG2D,MSG2C14 Move 'READ' to message
 XC FLAGS,FLAGS Clear the FLAGS field
*
 CALL EZASOKET, Issue READ Call X
 (READ,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
*
 AIF (NOT &TRACE).TRAC14A
* TRACE ENTRY FOR READ TRACE TYPE = 14
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRAC14A ANOP
*
* Send Initial Message to client to continue transaction
*
 MVC BUFFER(L'RESPMSG),RESPMSG Move Message to Buffer
 LA R6,L'RESPMSG Get length of message

262 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

 ST R6,DATALEN Put length in data field
 XC FLAGS,FLAGS Clear FLAGS field
 MVC MSG2D,MSG2C26 Move 'WRITE' to message
*
 CALL EZASOKET, Issue WRITE call X
 (WRITE,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRAC26A
* TRACE ENTRY FOR WRITE TRACE TYPE = 22
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRAC26A ANOP
SOC0300 DS 0H
*
* Read Message from Client
*
 MVC MSG2D,MSG2C14 Move 'READ' to message
 LA R0,L'BUFFER Get length of buffer
 ST R0,DATALEN Use it for data length
 XC FLAGS,FLAGS Clear FLAGS field
*
 CALL EZASOKET, X
 (READ,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BNH SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRAC14B
* TRACE ENTRY FOR RECV TRACE TYPE = 14
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRAC14B ANOP
 CLC BUFFER(3),=CL3'END' Was this last record
 BNE SOC0350 No
 MVI ENDSW,C'E' Yes, set end-of-transmission switch
SOC0350 DS 0H
*
* Send Response to Client
*
 MVC MSG2D,MSG2C26 Move 'WRITE' to message
 MVC DATALEN,RETCODE Get message length from previous call
 XC FLAGS,FLAGS Clear FLAGS field
*
 CALL EZASOKET, X
 (WRITE,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BNH SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRAC26B
* TRACE ENTRY FOR SEND TRACE TYPE = 26
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRAC26B ANOP
*
 CLI ENDSW,C'E' Have we received last record
 BNE SOC0300 No, so go back and do another
*
* Close sockets
*
 MVC MSG2D,MSG2C03 Move 'CLOSE1' to message
*
 CALL EZASOKET, Issue CLOSE call for connection skt X
 (CLOSE,CONNSOC,ERRNO,RETCODE),VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat
 AIF (NOT &TRACE).TRACE03
* TRACE ENTRY FOR CLOSE TRACE TYPE = 3
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRACE03 ANOP
*
 MVC MSG2D,MSG2C03A Move 'CLOSE2' to message
*
 CALL EZASOKET, Issue CLOSE call for listen socket X
 (CLOSE,LISTSOC,ERRNO,RETCODE),VL
*
 L R6,RETCODE Check for sucessful call
 C R6,=F'0' Is it less than zero
 BL SOCERR Yes, go display error and terminat

Chapter 8. IMS Listener samples 263

 AIF (NOT &TRACE).TRAC103
* TRACE ENTRY FOR CLOSE TRACE TYPE = 3
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
.TRAC103 ANOP
*
* Terminate Connection to API
*
 CALL EZASOKET, X
 (TERMAPI),VL
*
* Issue console message for task termination
*
 MVC MSG2D,MSG2CE Move 'Ended' to message
 LA R6,MSG Put text address in R6
 MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
*
* Return to Caller
*
 L R13,SOCSAVEH
 LM R14,R12,12(R13)
 BR R14
*
* Write error message to operator
*
SOCERR DS 0H Write error message to operator
 MVC ERR1D,MSG1D 'SERVER, TASK #'
 MVC ERRTD,MSGTD Move task number to message
 MVC ERR2D,MSG2D Call Type
 MVC ERR3D,ERR3C ' RETCODE= '
 MVI ERR3S,C'-' Move sign which is always minus
 MVC ERR5D,ERR5C ' ERRNO= '
 L R6,RETCODE Get return code value
 CVD R6,DWORK Convert it to decimal
 UNPK ERR4D,DWORK+4(4) Unpack it
 OI ERR4D+6,X'F0' Correct the sign
 L R6,ERRNO Get errno value
 CVD R6,DWORK Convert it to decimal
 UNPK ERR6D,DWORK+4(4) Unpack it
 OI ERR6D+6,X'F0' Correct the sign
 LA R6,ERR Put text address in R6
 MVC ERRLEN,=AL2(ERRTL) Put length of text in msg hdr.
 WTO TEXT=(R6), Write message to operator X
 MF=(E,WTOLIST)
*
* Return to Caller
*
* L R13,SOCSAVEH
* LM R14,R12,12(R13)
* BR R14
ABEND DS 0H
 DC H'0' Force ABEND

* Constants *

WTOPROT WTO TEXT=, List form of WTO Macro X
 MF=L
WTOPROTL EQU *-WTOPROT Length of WTO Prototype
MSG1C DC CL17'SERVER, TASK # '
MSG2CS DC CL8' STARTED'
MSG2CE DC CL8' ENDED '
ERR3C DC CL10' RETCODE= '
ERR5C DC CL8' ERRNO= '
MSG2C00 DC CL8' INITAPI'
MSG2C01 DC CL8' ACCEPT '
MSG2C02 DC CL8' BIND '
MSG2C03 DC CL8' CLOSE '
MSG2C03A DC CL8' CLOSE2 '
MSG2C07 DC CL8' GTHSTID'
MSG2C13 DC CL8' LISTEN '
MSG2C14 DC CL8' READ '
MSG2C19 DC CL8' SELECT '
MSG2C25 DC CL8' SOCKET '
MSG2C26 DC CL8' WRITE '
MSG2C32 DC CL8' TAKESKT'
RESPMSG DC CL50'FIRST RESPONSE FROM SERVER '

* Constants used for call types *

INITAPI DC CL16'INITAPI'
BIND DC CL16'BIND'
LISTEN DC CL16'LISTEN'
ACCEPT DC CL16'ACCEPT'
READ DC CL16'READ'
SELECT DC CL16'SELECT'
WRITE DC CL16'WRITE'
SOCKET DC CL16'SOCKET'
CLOSE DC CL16'CLOSE'
GETHSTID DC CL16'GETHOSTID'

264 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

TERMAPI DC CL16'TERMAPI'

* Program Storage Area *

SOCSTG DS 0F PROGRAM STORAGE
SOCSAVE DS 0F Save Area
SOCSAVE1 DS F Word for high-level languages
SOCSAVEH DS F Address of previous save area
SOCSAVEL DS F Address of next save area
SOCSAV14 DS F Reg 14
SOCSAV15 DS F Reg 15
SOCSAV0 DS F Reg 0
SOCSAV1 DS F Reg 1
SOCSAV2 DS F Reg 2
SOCSAV3 DS F Reg 3
SOCSAV4 DS F Reg 4
SOCSAV5 DS F Reg 5
SOCSAV6 DS F Reg 6
SOCSAV7 DS F Reg 7
SOCSAV8 DS F Reg 8
SOCSAV9 DS F Reg 9
SOCSAV10 DS F Reg 10
SOCSAV11 DS F Reg 11
SOCSAV12 DS F Reg 12
SOCSAV13 DS F Reg 13
PARMADDR DS F Address of parameter list
GWAADDR DS F Address of Global Work Area
TIEADDR DS F Address of Task Information Element
LISTSOC DS H Socket number used for listen
CONNSOC DS H Socket number created by accept
SOCMSGN DS F Number of messages to be exchanged
SOCMSGL DS F Length of messages to be exchanged
SOCTASKC DS CL8 Character task identifier
HISOC DS F Highest socket descriptor available
SERVLEN DS H
SERVSOC DS 0F Socket Address of Server
SERVAF DS H Address Family of Server = 2
SERVPORT DS H Port Address of Server
SERVIADD DS F Internet Address of Server
ENDSW DS C End of transmission switch
MSG DS 0F Message area
MSGLEN DS H Length of message
MSG1D DS CL17 'SERVER, TASK #'
MSGTD DS CL5 Task Number
MSG2D DS CL8 Last part of message
MSGE EQU * End of message
MSGTL EQU MSGE-MSG1D Length of message text
ERR DS 0F Error message area
ERRLEN DS H Length of message
ERR1D DS CL17 'SERVER, TASK #'
ERRTD DS CL5 Task Number
ERR2D DS CL8 Last part of message
ERR3D DS CL10 ' RETCODE = '
ERR3S DS C Sign which is always -
ERR4D DS CL7 Return code
ERR5D DS CL8 ' ERRNO ='
ERR6D DS CL7 Error number
ERRE EQU * End of message
ERRTL EQU ERRE-ERR1D Length of message text

* Name structure used by bind *

SOCKNAME DS 0F Socket Name structure
SAF DS H The address family of the socket
SPORT DS H The port number of this socket
SINETADR DS F The internet address of this socket
 DS D Reserved
SOCKNAML EQU *-SOCKNAME Length of SOCKNAME Structure
CLIENTID DS 0F Client Id structure
CDOMAIN DS F The domain of this client (2)
CNAME DS CL8 The major name of this client
CSUBTASK DS CL8 The minor (subtask) name of this X
 client
 DS D Reserved
CLIENTL EQU *-CLIENTID
BUFFER DS CL(BUFLEN) Socket I/O Buffer
DATALEN DS F Length of buffer data
DWORK DS D Double word work area
SENDINT DS D Time interval for send
RECNO DS PL4 Record Number
AF DS F Address family for socket call
NS DS F New socket number for socket call
SOCTYPE DS F Socket type for socket call
PROTO DS F Protocol for socket call
ERRNO DS F Error number returned from call
RETCODE DS F Return code from call
CINADDR DS F Internet address of client
CPORT DS F Port number of client
MAXSOC DS H Maximum # sockets for INITAPI
SELSOC DS F Maximum # sockets for SELECT
BACKLOG DS F Backlog value for LISTEN
FLAGS DS F FLAGS field for RECV and RECVFROM
RSNDMASK DS F Read send mask for select

Chapter 8. IMS Listener samples 265

WSNDMASK DS F Write send mask for select
ESNDMASK DS F Exception send mask for select
RRETMASK DS F Read return mask for select
WRETMASK DS F Write return mask for select
ERETMASK DS F Exception return mask for select
WTOLIST DS CL(WTOPROTL) List form of WTO Macro
EZASMTI EZASMI TYPE=TASK, X
 STORAGE=CSECT Generate task storage for interface
EZASMGW EZASMI TYPE=GLOBAL, Storage definition for GWA X
 STORAGE=CSECT
SOCSTGE EQU * End of Program Storage
SOCSTGL EQU SOCSTGE-SOCSTG Length of Program Storage
 LTORG
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
GWABAR EQU 13
 END

Figure 87. Sample of IMS program as a server

WTO output from sample program

Client Output

13.29.18 JOB00084 IEF403I SOCCALLS - STARTED - TIME=13.29.18
13.29.18 JOB00084 +SERVER, TASK # 00000 STARTED
13.29.19 JOB00084 +SERVER, TASK # 00000 INITAPI
13.29.19 JOB00084 +SERVER, TASK # 00000 SOCKET
13.29.19 JOB00084 +SERVER, TASK # 00000 GTHSTID
13.29.19 JOB00084 +SERVER, TASK # 00000 BIND
13.29.20 JOB00084 +SERVER, TASK # 00000 LISTEN
13.29.41 JOB00084 +SERVER, TASK # 00000 SELECT
13.29.41 JOB00084 +SERVER, TASK # 00000 ACCEPT
13.29.41 JOB00084 +SERVER, TASK # 00000 READ
13.29.41 JOB00084 +SERVER, TASK # 00000 WRITE
13.29.41 JOB00084 +SERVER, TASK # 00000 READ
13.29.41 JOB00084 +SERVER, TASK # 00000 WRITE
13.29.41 JOB00084 +SERVER, TASK # 00000 READ
13.29.42 JOB00084 +SERVER, TASK # 00000 WRITE
13.29.42 JOB00084 +SERVER, TASK # 00000 CLOSE
13.29.42 JOB00084 +SERVER, TASK # 00000 CLOSE2
13.29.42 JOB00084 +SERVER, TASK # 00000 ENDED

Server Output

13.27.45 JOB00082 IEF403I MESSAGE - STARTED - TIME=13.27.45
13.29.40 JOB00082 +IMSTCPCL, TASK # 00000 STARTED
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 INITAPI
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 GTHSTID
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 SOCKET
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 CONNECT
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 WRITE RETCODE= +0000016
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 READ RETCODE= +0000050
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 WRITE RETCODE= +0000016
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 READ RETCODE= +0000016
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 WRITE RETCODE= +0000048
13.29.42 JOB00082 +IMSTCPCL, TASK # 00000 READ RETCODE= +0000048
13.29.42 JOB00082 +IMSTCPCL, TASK # 00000 CLOSE
13.29.42 JOB00082 +IMSTCPCL, TASK # 00000 ENDED

266 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Appendix A. Return codes

This appendix covers the following return codes and error messages

• Error numbers from MVS TCP/IP
• Error codes from the Sockets Extended interface

Sockets return codes (ERRNOs)
This section provides the system-wide message numbers and codes set by the system calls. These
message numbers and codes are in the TCPERRNO.H include file supplied with TCP/IP Services.

Table 49. Sockets ERRNOs

Error
numbe
r Message name

Socket
API type Error description Programmer's response

1 EAI_NONAME GETADDRINFO GETNAMEINFO NODE or HOST cannot be found. Ensure the NODE or HOST name can be
resolved.

1 EDOM All Argument too large. Check parameter values of the function
call.

1 EPERM All Permission is denied. No owner exists. Check that TCP/IP is still active; check
protocol value of socket () call.

1 EPERM IOCTL (SIOCGPARTNERINFO) Both endpoints do not reside in the
same security domain.

Check and modify the security domain
name for the endpoints. After you
correct the security domain name, the
application might need to close the
connection if the IOCTL is needed.

1 EPERM IOCTL (SIOCGPARTNERINFO,
SIOCSPARTNERINFO)

The security domain name is not
defined.

Define the security domain name on
both endpoints. After you define the
security domain name, the application
might need to close the connection if
the IOCTL is needed.

1 EPERM IOCTL (SIOCTTLSCTL) Denotes one of the following error
conditions:

• The TTLS_INIT_ CONNECTION
option was requested
with either TTLS_RESET_
SESSION, TTLS_RESET_ CIPHER,
TTLS_RESET_WRITE_CIPHER,
TTLS_SEND_SESSION_TICKET, or
TTLS_STOP_ CONNECTION

• The TTLS_STOP_ CONNECTION
option was requested
along with TTLS_RESET_
SESSION, TTLS_RESET_ CIPHER,
TTLS_RESET_WRITE_CIPHER, or
TTLS_SEND_SESSION_TICKET

• The TTLS_ALLOW_ HSTIMEOUT
option was requested without
TTLS_INIT_ CONNECTION

• The TTLS_RESET_WRITE_CIPHER
option was requested along
with TTLS_RESET_SESSION or
TTLS_RESET_CIPHER

• The TTLS_SEND_SESSION_TICKET
option was requested along
with TTLS_RESET_SESSION,
TTLS_RESET_CIPHER, or
TTLS_RESET_WRITE_CIPHER

Request TTLS_RESET_SESSION,
TTLS_RESET_CIPHER,
TTLS_RESET_WRITE_CIPHER, or
TTLS_SEND_SESSION_TICKET only
when TTLS_INIT_ CONNECTION and
TTLS_STOP_ CONNECTION are not
requested. Always request TTLS_INIT_
CONNECTION when TTLS_ALLOW_
HSTIMEOUT is requested. Use
seperate SIOCTTLSCTL ioctls to
request TTLS_INIT_ CONNECTION and
TTLS_STOP_ CONNECTION.

Use separate SIOCTTLSCTL ioctls to
request TTLS_RESET_WRITE_CIPHER
or TTLS_SEND_SESSION_TICKET.

2 EAI_AGAIN FREEADDRINFO GETADDRINFO GETNAMEINFO For GETADDRINFO, NODE could not
be resolved within the configured time
interval. For GETNAMEINFO, HOST
could not be resolved within the
configured time interval. The Resolver
address space has not been started.
The request can be retried later.

Ensure the Resolver is active, then retry
the request.

2 ENOENT All The data set or directory was not found. Check files used by the function call.

2 ERANGE All The result is too large. Check parameter values of the function
call.

© Copyright IBM Corp. 2000, 2021 267

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

3 EAI_FAIL FREEADDRINFO GETADDRINFO GETNAMEINFO This is an unrecoverable error.
NODELEN, HOSTLEN, or SERVLEN is
incorrect. For FREEADDRINFO, the
resolver storage does not exist.

Correct the NODELEN, HOSTLEN, or
SERVLEN. Otherwise, call your system
administrator.

3 ESRCH All The process was not found. A table
entry was not located.

Check parameter values and structures
pointed to by the function parameters.

4 EAI_OVERFLOW GETNAMEINFO The output buffer for the host name or
service name was too small.

Increase the size of the buffer to 255
characters, which is the maximum size
permitted.

4 EINTR All A system call was interrupted. Check that the socket connection and
TCP/IP are still active.

5 EAI_FAMILY GETADDRINFO GETNAMEINFO The AF or the FAMILY is incorrect. Correct the AF or the FAMILY.

5 EIO All An I/O error occurred. Check status and contents of source
database if this occurred during a file
access.

6 EAI_MEMORY GETADDRINFO GETNAMEINFO The resolver cannot obtain storage to
process the host name.

Contact your system administrator.

6 ENXIO All The device or driver was not found. Check status of the device attempting
to access.

7 E2BIG All The argument list is too long. Check the number of function
parameters.

7 EAI_BADFLAGS GETADDRINFO GETNAMEINFO FLAGS has an incorrect value. Correct the FLAGS.

8 EAI_SERVICE GETADDRINFO The SERVICE was not recognized for
the specified socket type.

Correct the SERVICE.

8 ENOEXEC All An EXEC format error occurred. Check that the target module on an
exec call is a valid executable module.

9 EAI_SOCKTYPE GETADDRINFO The SOCTYPE was not recognized. Correct the SOCTYPE.

9 EBADF All An incorrect socket descriptor was
specified.

Check socket descriptor value. It might
be currently not in use or incorrect.

9 EBADF Givesocket The socket has already been given.
The socket domain is not AF_INET or
AF_INET6.

Check the validity of function
parameters.

9 EBADF Select One of the specified descriptor sets is
an incorrect socket descriptor.

Check the validity of function
parameters.

9 EBADF Takesocket The socket has already been taken. Check the validity of function
parameters.

9 EAI_SOCKTYPE GETADDRINFO The SOCTYPE was not recognized. Correct the SOCTYPE.

10 ECHILD All There are no children. Check if created subtasks still exist.

11 EAGAIN All There are no more processes. Retry the operation. Data or condition
might not be available at this time.

11 EAGAIN All TCP/IP is not active at the time of the
request.

Start TCP/IP, and retry the request.

11 EAGAIN IOCTL (SIOCGPARTNERINFO) The IOCTL was issued in no-suspend
mode and the SIOCSPARTNERINFO
IOCTL has not been issued.

Reissue the IOCTL with a timeout value
to set the amount of time to wait
while the partner security credentials
are being retrieved.

Restriction: You cannot use a select
mask to determine when an IOCTL
is complete, because an IOCTL is
not affected by whether the socket
is running in blocking or nonblocking
mode. If the IOCTL times out, reissue
the IOCTL to retrieve the partner
security credentials.

12 ENOMEM All There is not enough storage. Check the validity of function
parameters.

13 EACCES All Permission denied, caller not
authorized.

Check access authority of file.

13 EACCES IOCTL (SIOCGPARTNERINFO) The application is not running in
supervisor state, is not APF authorized,
or is not permitted to the appropriate
SERVAUTH profile.

Allow the application to issue this
IOCTL, or provide the user ID with the
proper SERVAUTH permission.

268 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

13 EACCES IOCTL (SIOCTTLSCTL) The IOCTL is requesting a function
that requires that the socket be
mapped to policy that specifies
ApplicationControlled On.

Check policy and add
ApplicationControlled On if the
application should be permitted to
issue the controlled SIOCTTLSCTL
functions.

13 EACCES Takesocket The other application (listener) did
not give the socket to your
application. Permission denied, caller
not authorized.

Check access authority of file.

14 EFAULT All An incorrect storage address or length
was specified.

Check the validity of function
parameters.

14 EFAULT All EZASMI macros when using an asynchronous
exit routine.

The exit routine has abnormally ended
(ABEND condition).

Correct the error in the routine's code.
Add an ESTAE routine to the exit.

14 EFAULT IOCTL (SIOCSAPPLDATA) An abend occurred while attempting to
copy the SetADcontainer structure from
the address provided in the SetAD_ptr
field.

Check the validity of function
parameters.

15 ENOTBLK All A block device is required. Check device status and
characteristics.

16 EBUSY All Listen has already been called for this
socket. Device or file to be accessed is
busy.

Check if the device or file is in use.

17 EEXIST All The data set exists. Remove or rename existing file.

18 EXDEV All This is a cross-device link. A link
to a file on another file system was
attempted.

Check file permissions.

19 ENODEV All The specified device does not exist. Check file name and if it exists.

20 ENOTDIR All The specified directory is not a
directory.

Use a valid file that is a directory.

21 EISDIR All The specified directory is a directory. Use a valid file that is not a directory.

22 EINVAL All types An incorrect argument was specified. Check the validity of function
parameters.

22 EINVAL Multicast Source filter APIs Mix of any-source, source-specific or
full-state APIs

Specify the correct type of APIs.

22 EINVAL MCAST_JOIN_GROUP, MCAST_JOIN_SOURCE_
GROUP, MCAST_BLOCK_SOURCE,
MCAST_LEAVE_GROUP, MCAST_LEAVE_SOURCE_
GROUP, MCAST_UNBLOCK_ SOURCE,
SIOCGMSFILTER, SIOCSMSFILTER

The socket address family or the socket
length of the input multicast group or
the source IP address is not correct.

Specify the correct value.

22 EINVAL SIOCSMSFILTER, SIOCSIPMSFILTER The specified filter mode is not correct. Specify the correct value.

23 ENFILE All Data set table overflow occurred. Reduce the number of open files.

24 EMFILE All The socket descriptor table is full. Check the maximum sockets specified
in MAXDESC().

25 ENOTTY All An incorrect device call was specified. Check specified IOCTL() values.

26 ETXTBSY All A text data set is busy. Check the current use of the file.

27 EFBIG All The specified data set is too large. Check size of accessed dataset.

28 ENOSPC All There is no space left on the device. Increase the size of accessed file.

29 ESPIPE All An incorrect seek was attempted. Check the offset parameter for seek
operation.

30 EROFS All The data set system is Read only. Access data set for read only operation.

31 EMLINK All There are too many links. Reduce the number of links to the
accessed file.

32 EPIPE All The connection is broken. For socket
write/send, peer has shut down one or
both directions.

Reconnect with the peer.

32 EPIPE IOCTL (SIOCTTLSCTL requesting
TTLS_INIT_ CONNECTION, TTLS_RESET_CIPHER,
TTLS_RESET_WRITE_CIPHER,
TTLS_SEND_SESSION_TICKET or TTLS_STOP_
CONNECTION)

The TCP connection is not in the
established state.

Issue the SIOCTTLSCTL IOCTL when
the socket is connected.

33 EDOM All The specified argument is too large. Check and correct function parameters.

34 ERANGE All The result is too large. Check function parameter values.

Appendix A. Return codes 269

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

35 EWOULDBLOCK Accept The socket is in nonblocking mode and
connections are not queued. This is not
an error condition.

Reissue Accept().

35 EWOULDBLOCK IOCTL (SIOCTTLSCTL) The handshake is in progress and the
socket is a nonblocking socket.

For a nonblocking socket, you can
wait for the handshake to complete
by issuing Select or Poll for Socket
Writable.

35 EWOULDBLOCK Read Recvfrom The socket is in nonblocking mode and
read data is not available. This is not an
error condition.

Issue a select on the socket to
determine when data is available to be
read or reissue the Read()/Recvfrom().

35 EWOULDBLOCK All receive calls (RECV, RECVMSG, RECVFROM,
READV, READ), when the socket is set with the
SO_RCVTIMEO socket option

The socket is in blocking mode and
the receive call has blocked for the
time period that was specified in the
SO_RCVTIMEO option. No data was
received.

The application should reissue the
receive call.

35 EWOULDBLOCK Send Sendto Write The socket is in nonblocking mode and
buffers are not available.

Issue a select on the socket to
determine when data is available to be
written or reissue the Send(), Sendto(),
or Write().

35 EWOULDBLOCK All send calls (SEND, SENDMSG, SENDTO, WRITEV,
WRITE), when the socket is set with the
SO_SNDTIMEO socket option

The socket is in blocking mode and
the send call has blocked for the
time period that was specified in the
SO_SNDTIMEO option. No data was
sent.

The application should reissue the send
call.

36 EINPROGRESS Connect The socket is marked nonblocking and
the connection cannot be completed
immediately. This is not an error
condition.

See the Connect() description for
possible responses.

36 EINPROGRESS IOCTL (SIOCGPARTNERINFO) The IOCTL was issued in no-suspend
mode after the SIOCSPARTNERINFO
IOCTL was issued, but the partner
security credentials are not currently
available.

Retry the IOCTL, or issue the IOCTL
with a timeout value to set the amount
of time to wait while the partner
security credentials are being retrieved.

Restriction: You cannot use a select
mask to determine when an IOCTL
is complete, because an IOCTL is
not affected by whether the socket
is running in blocking or nonblocking
mode. If the IOCTL times out, reissue
the IOCTL to retrieve the partner
security credentials.

36 EINPROGRESS IOCTL (SIOCTTLSCTL requesting TTLS_INIT_
CONNECTION or TTLS_STOP_ CONNECTION)

The handshake is already in progress
and the socket is a nonblocking socket.

For a nonblocking socket, you can
wait for the handshake to complete
by issuing Select or Poll for Socket
Writable.

37 EALREADY Connect The socket is marked nonblocking and
the previous connection has not been
completed.

Reissue Connect().

37 EALREADY IOCTL (SIOCGPARTNERINFO) The request is already in progress. Only
one IOCTL can be outstanding.

Check and modify the socket
descriptor, if specified; otherwise, no
action is needed.

37 EALREADY IOCTL (SIOCTTLSCTL requesting TTLS_INIT_
CONNECTION or TTLS_STOP_ CONNECTION)

For TTLS_INIT_ CONNECTION, the
socket is already secure. For
TTLS_STOP_ CONNECTION, the socket
is not secure.

Modify the application so that it
issues the SIOCTTLSCTL IOCTL that
requests TTLS_INIT_ CONNECTION
only when the socket is not already
secure and that requests TTLS_STOP_
CONNECTION only when the socket is
secure.

37 EALREADY Maxdesc A socket has already been created
calling Maxdesc() or multiple calls to
Maxdesc().

Issue Getablesize() to query it.

37 EALREADY Setibmopt A connection already exists to a
TCP/IP image. A call to SETIBMOPT
(IBMTCP_IMAGE), has already been
made.

Call Setibmopt() only once.

38 ENOTSOCK All A socket operation was requested on
a nonsocket connection. The value for
socket descriptor was not valid.

Correct the socket descriptor value and
reissue the function call.

39 EDESTADDRREQ All A destination address is required. Fill in the destination field in the correct
parameter and reissue the function call.

40 EMSGSIZE Sendto Sendmsg Send Write for Datagram (UDP) or
RAW sockets

The message is too long. It exceeds the
IP limit of 64K or the limit set by the
setsockopt() call.

Either correct the length parameter, or
send the message in smaller pieces.

270 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

41 EPROTOTYPE All The specified protocol type is incorrect
for this socket.

Correct the protocol type parameter.

41 EPROTOTYPE bind2addrsel The referenced socket is not a stream
(TCP) or datagram (UDP) socket.

Issue bind2addrsel() on TCP or UDP
sockets only.

41 EPROTOTYPE IOCTL (SIOCGPARTNERINFO, SIOCSAPPLDATA,
SIOCSPARTNERINFO, SIOCTTLSCTL)

Socket is not a TCP socket. Issue the IOCTL on TCP sockets only.

42 ENOPROTOOPT Getsockopt Setsockopt The socket option specified is incorrect
or the level is not SOL_SOCKET. Either
the level or the specified optname is
not supported.

Correct the level or optname.

42 ENOPROTOOPT Getibmsockopt Setibmsockopt Either the level or the specified
optname is not supported.

Correct the level or optname.

43 EPROTONOSUPPORT Socket The specified protocol is not supported. Correct the protocol parameter.

44 ESOCKTNOSUPPORT All The specified socket type is not
supported.

Correct the socket type parameter.

45 EOPNOTSUPP Accept Givesocket The selected socket is not a stream
socket.

Use a valid socket.

45 EOPNOTSUPP bind2addrsel The referenced socket is not a type that
supports the requested function

Use a socket of the correct type.

45 EOPNOTSUPP Getibmopt Setibmopt The socket does not support this
function call. This command is not
supported for this function.

Correct the command parameter.
See Getibmopt() for valid commands.
Correct by ensuring a Listen() was not
issued before the Connect().

45 EOPNOTSUPP GETSOCKOPT The specified GETSOCKOPT OPTNAME
option is not supported by this socket
API.

Correct the GETSOCKOPT OPTNAME
option.

45 EOPNOTSUPP IOCTL The specified IOCTL command is not
supported by this socket API.

Correct the IOCTL COMMAND.

45 EOPNOTSUPP IOCTL (SIOCSPARTNERINFO) The request must be issued before the
listen call or the connect call.

Check and modify the socket
descriptor, or close the connection and
reissue the call.

45 EOPNOTSUPP IOCTL (SIOCTTLSCTL requesting
TTLS_INIT_ CONNECTION,
TTLS_RESET_ SESSION, TTLS_RESET_
CIPHER, TTLS_RESET_WRITE_CIPHER,
TTLS_SEND_SESSION_TICKET, or TTLS_STOP_
CONNECTION)

Mapped policy indicates that AT-TLS is
not enabled for the connection.

Modify the policy to enable AT-TLS for
the connection.

45 EOPNOTSUPP Listen The socket does not support the Listen
call.

Change the type on the Socket()
call when the socket was created.
Listen() supports only a socket type of
SOCK_STREAM.

45 EOPNOTSUPP RECV, RECVFROM, RECVMSG, SEND, SENDTO,
SENDMSG

The specified flags are not supported
on this socket type or protocol.

Correct the FLAG.

46 EPFNOSUPPORT All The specified protocol family is not
supported or the specified domain for
the client identifier is not AF_INET=2.

Correct the protocol family.

47 EAFNOSUPPORT bind2addrsel inet6_is_srcaddr You specified an IP address that is not
an AF_INET6 IP address

Correct the IP address. If the IP
address is an IPv4 address, you must
specify it as an IPv4-mapped IPv6
address.

47 EAFNOSUPPORT bind2addrsel inet6_is_srcaddr You attempted an IPv6-only API for
a stack that does not support the
AF_INET6 domain.

Activate the AF_INET6 stack, and retry
the request.

47 EAFNOSUPPORT Bind Connect Socket The specified address family is not
supported by this protocol family.

For Socket(), set the domain parameter
to AF_INET. For Bind() and Connect(),
set Sin_Family in the socket address
structure to AF_INET.

47 EAFNOSUPPORT Getclient Givesocket The socket specified by the socket
descriptor parameter was not created
in the AF_INET domain.

The Socket() call used to create the
socket should be changed to use
AF_INET for the domain parameter.

47 EAFNOSUPPORT IOCTL You attempted to use an IPv4-only ioctl
on an AF_INET6 socket.

Use the correct socket type for the ioctl
or use an ioctl that supports AF_INET6
sockets.

Appendix A. Return codes 271

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

48 EADDRINUSE Bind, Connect The address is in a timed wait because
a LINGER delay from a previous close
or another process is using the address.
This error can also occur if the port
specified in the bind call has been
configured as RESERVED on a port
reservation statement in the TCP/IP
profile.

To reuse the same address, use
Setsockopt() with SO_REUSEADDR.
See the section about Setsockopt()
in z/OS Communications Server:
IP Sockets Application Programming
Interface Guide and Reference for more
information. Otherwise, use a different
address or port in the socket address
structure.

48 EADDRINUSE IP_ADD_MEMBERSHIP, IP_ADD_SOURCE_
MEMBERSHIP, IPV6_JOIN_GROUP,
MCAST_JOIN_GROUP, MCAST_JOIN_SOURCE_
GROUP

The specified multicast address and
interface address (or interface index)
pair is already in use.

Correct the specified multicast address,
interface address, or interface index.

49 EADDRNOTAVAIL Bind The specified address is incorrect for
this host.

Correct the function address
parameter.

49 EADDRNOTAVAIL Connect The calling host cannot reach the
specified destination.

Correct the function address
parameter.

49 EADDRNOTAVAIL bind2addrsel For the specified destination address,
there is no source address that
the application can bind to. Possible
reasons can be one of the following
situations:

• The socket is a stream socket, but
the specified destination address is
a multicast address.

• No ephemeral ports are available to
assign to the socket.

Correct the function address parameter
or issue the request when ephemeral
ports are available.

49 EADDRNOTAVAIL inet6_is_srcaddr The address specified is not correct for
one of these reasons:

• The address is not an address on
this node.

• The address was not active at the
time of the request.

• The scope ID specified for a link-
local IPV6 address is incorrect.

Correct or activate the address

49 EADDRNOTAVAIL IP_BLOCK_SOURCE, IP_ADD_SOURCE_
MEMBERSHIP, MCAST_BLOCK_SOURCE,
MCAST_JOIN_SOURCE_ GROUP

A duplicate source IP address is
specified on the multicast group and
interface pair.

Correct the specified source IP
address.

49 EADDRNOTAVAIL IP_UNBLOCK_SOURCE, IP_DROP_SOURCE_
MEMBERSHIP, MCAST_UNBLOCK_ SOURCE,
MCAST_LEAVE_SOURCE_ GROUP

A previously blocked source multicast
group cannot be found.

Correct the specified address.

49 EADDRNOTAVAIL Multicast APIs The specified multicast address,
interface address, or interface index is
not correct.

Correct the specified address.

50 ENETDOWN All The network is down. Retry when the connection path is up.

51 ENETUNREACH Connect The network cannot be reached. Ensure that the target application is
active.

52 ENETRESET All The network dropped a connection on a
reset.

Reestablish the connection between
the applications.

53 ECONNABORTED All The software caused a connection
abend.

Reestablish the connection between
the applications.

54 ECONNRESET All The connection to the destination host
is not available.

N/A

54 ECONNRESET Send Write The connection to the destination host
is not available.

The socket is closing. Issue Send() or
Write() before closing the socket.

55 ENOBUFS All No buffer space is available. Check the application for massive
storage allocation call.

55 ENOBUFS Accept Not enough buffer space is available to
create the new socket.

Call your system administrator.

55 ENOBUFS IOCTL (SIOCGPARTNERINFO) The buffer size provided is too small. Create a larger input buffer based on
the value returned in the PI_Buflen
field.

55 ENOBUFS IOCTL (SIOCSAPPLDATA) There is no storage available to store
the associated data.

Call your system administrator.

55 ENOBUFS IOCTL (SIOCTTLSCTL TTLS_Version1 requesting
TTLS_RETURN_ CERTIFICATE or TTLS_Version2
query)

The buffer size provided is too small. For TTLS_Version1 use the returned
certificate length to allocate a larger
buffer and reissue IOCTL with the larger
buffer.

272 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

55 ENOBUFS IP_BLOCK_SOURCE, IP_ADD_SOURCE_
MEMBERSHIP, MCAST_BLOCK_SOURCE,
MCAST_JOIN_SOURCE_ GROUP,
SIOCSIPMSFILTER, SIOCSMSFILTER,
setipv4sourcefilter, setsourcefilter

A maximum of 64 source filters can
be specified per multicast address,
interface address pair.

Remove unneeded source IP addresses
and reissue the command.

55 ENOBUFS Send Sendto Write Not enough buffer space is available to
send the new message.

Call your system administrator.

55 ENOBUFS Takesocket Not enough buffer space is available to
create the new socket.

Call your system administrator.

56 EISCONN Connect The socket is already connected. Correct the socket descriptor on
Connect() or do not issue a Connect()
twice for the socket.

57 ENOTCONN All The socket is not connected. Connect the socket before
communicating.

57 ENOTCONN IOCTL (SIOCGPARTNERINFO) The requested socket is not connected. Check and modify the socket
descriptor, or reissue the IOCTL after
the connect call from the client side
or after the accept call from the server
side.

57 ENOTCONN IOCTL (SIOCTTLSCTL) The socket is not connected. Issue the SIOCTTLSCTL IOCTL only
after the socket is connected.

58 ESHUTDOWN All A Send cannot be processed after
socket shutdown.

Issue read/receive before shutting
down the read side of the socket.

59 ETOOMANYREFS All There are too many references. A splice
cannot be completed.

Call your system administrator.

59 ETOOMANYREFS IP_ADD_MEMBERSHIP, IP_ADD_SOURCE_
MEMBERSHIP, MCAST_JOIN_GROUP,
MCAST_JOIN_SOURCE_ GROUP,
IPV6_JOIN_GROUP

A maximum of 20 multicast groups per
single UDP socket or a maximum of 256
multicast groups per single RAW socket
can be specified.

Remove unneeded multicast groups
and reissue the command.

60 ETIMEDOUT Connect The connection timed out before it was
completed.

Ensure the server application is
available.

61 ECONNREFUSED Connect The requested connection was refused. Ensure server application is available
and at specified port.

62 ELOOP All There are too many symbolic loop
levels.

Reduce symbolic links to specified file.

63 ENAMETOOLONG All The file name is too long. Reduce size of specified file name.

64 EHOSTDOWN All The host is down. Restart specified host.

65 EHOSTUNREACH All There is no route to the host. Set up network path to specified host
and verify that host name is valid.

66 ENOTEMPTY All The directory is not empty. Clear out specified directory and
reissue call.

67 EPROCLIM All There are too many processes in the
system.

Decrease the number of processes or
increase the process limit.

68 EUSERS All There are too many users on the
system.

Decrease the number of users or
increase the user limit.

69 EDQUOT All The disk quota has been exceeded. Call your system administrator.

70 ESTALE All An old NFS** data set handle was
found.

Call your system administrator.

71 EREMOTE All There are too many levels of remote in
the path.

Call your system administrator.

72 ENOSTR All The device is not a stream device. Call your system administrator.

73 ETIME All The timer has expired. Increase timer values or reissue
function.

73 ETIME IOCTL (SIOCGPARTNERINFO) The wait time for the request has
expired, possibly as the result of
network problems.

Retry the request.

Restriction: You cannot use a select
mask to determine when an IOCTL
is complete, because an IOCTL is
not affected by whether the socket
is running in blocking or nonblocking
mode. If the IOCTL times out, reissue
the IOCTL to retrieve the partner
security credentials.

74 ENOSR All There are no more stream resources. Call your system administrator.

Appendix A. Return codes 273

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

75 ENOMSG All There is no message of the desired
type.

Call your system administrator.

76 EBADMSG All The system cannot read the message. Verify that z/OS Communications
Server installation was successful and
that message files were properly
loaded.

77 EIDRM All The identifier has been removed. Call your system administrator.

78 EDEADLK All A deadlock condition has occurred. Call your system administrator.

78 EDEADLK Select Selectex None of the sockets in the socket
descriptor sets are either AF_INET
or AF_IUCV sockets and there is no
timeout value or no ECB specified. The
select/selectex would never complete.

Correct the socket descriptor sets so
that an AF_INET or AF_IUCV socket
is specified. A timeout or ECB value
can also be added to avoid the select/
selectex from waiting indefinitely.

79 ENOLCK All No record locks are available. Call your system administrator.

80 ENONET All The requested machine is not on the
network.

Call your system administrator.

81 ERREMOTE All The object is remote. Call your system administrator.

82 ENOLINK All The link has been severed. Release the sockets and reinitialize the
client-server connection.

83 EADV All An ADVERTISE error has occurred. Call your system administrator.

84 ESRMNT All An SRMOUNT error has occurred. Call your system administrator.

85 ECOMM All A communication error has occurred on
a Send call.

Call your system administrator.

86 EPROTO All A protocol error has occurred. Call your system administrator.

86 EPROTO IOCTL (SIOCTTLSCTL requesting
TTLS_RESET_SESSION, TTLS_RESET_CIPHER,
TTLS_RESET_WRITE_CIPHER,
TTLS_SEND_SESSION_TICKET,
TTLS_STOP_CONNECTION, or
TTLS_ALLOW_HSTIMEOUT)

One of the following errors occurred:

• A TTLS_INIT_CONNECTION request
was not received for the connection.

• TTLS_STOP_CONNECTION was
requested on a connection
that has outstanding application
data. For unread application
data, the errno junior
is JrTTLSStopReadDataPending.
For unwritten application
data, the errno junior is
JrTTLSStopWriteDataPending.

• TTLS_RESET_CIPHER or
TTLS_STOP_ CIPHER was requested
on a connection that is secured
using SSL version 2.

• TTLS_RESET_WRITE_CIPHER or
TTLS_SEND_SESSION_TICKET was
requested on a connection that is
secured using a protocol version
less than TLS version 1.3.

• TTLS_ALLOW_HSTIMEOUT was
requested but the policy has the
HandshakeRole value client or the
HandshakeTimeout value is 0.

• TTLS_SEND_SESSION_TICKET was
requested but the policy has the
HandshakeRole value client or
GSK_SESSION_TICKET_SERVER_EN
ABLE value Off or the
GSK_SESSION_TICKET_SERVER_CO
UNT value is not 0.

• Request TTLS_INIT_CONNECTION
before requesting
TTLS_RESET_SESSION,
TTLS_RESET_CIPHER,
TTLS_RESET_WRITE_CIPHER, or
TTLS_SEND_SESSION_TICKET.

• Request TTLS_STOP_CONNECTION
after all application data is
cleared from the connection. For
JrTTLSStopReadDataPending, read
all available application data. For
JrTTLSStopWriteDataPending, wait
for all the outstanding application
data to be written.

• Request TTLS_RESET_CIPHER or
TTLS_STOP_CONNECTION only on
connections secured using SSL
version 3 or TLS version 1.0 or
higher.

• Request
TTLS_RESET_WRITE_CIPHER or
TTLS_SEND_SESSION_TICKET only
on connections secured using TLS
version 1.3 or higher.

• Request TTLS_ALLOW_HSTIMEOUT
only when the security type is
TTLS_SEC_SERVER or higher and
the HandshakeTimeout value is not
0.

• Request
TTLS_SEND_SESSION_TICKET only
when the security type is
TTLS_SEC_SERVER or higher and
when
GSK_SESSION_TICKET_SERVER_EN
ABLE is On and
GSK_SESSION_TICKET_SERVER_CO
UNT is 0.

87 EMULTIHOP All A multi-hop address link was
attempted.

Call your system administrator.

88 EDOTDOT All A cross-mount point was detected. This
is not an error.

Call your system administrator.

89 EREMCHG All The remote address has changed. Call your system administrator.

90 ECONNCLOSED All The connection was closed by a peer. Check that the peer is running.

274 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

113 EBADF All Socket descriptor is not in correct
range. The maximum number of socket
descriptors is set by MAXDESC(). The
default range is 0–49.

Reissue function with corrected socket
descriptor.

113 EBADF Bind socket The socket descriptor is already being
used.

Correct the socket descriptor.

113 EBADF Givesocket The socket has already been given. The
socket domain is not AF_INET.

Correct the socket descriptor.

113 EBADF Select One of the specified descriptor sets is
an incorrect socket descriptor.

Correct the socket descriptor. Set on
Select() or Selectex().

113 EBADF Takesocket The socket has already been taken. Correct the socket descriptor.

113 EBADF Accept A Listen() has not been issued before
the Accept().

Issue Listen() before Accept().

121 EINVAL All An incorrect argument was specified. Check and correct all function
parameters.

121 EINVAL IOCTL (SIOCSAPPLDATA) The input parameter is not a correctly
formatted SetApplData structure.

• The SetAD_eye1 value is not valid.

• The SetAD_ver value is not valid.

• The storage pointed to by SetAD_ptr
does not contain a correctly
formatted SetADcontainer structure.

• The SetAD_eye2 value is not valid.

• The SetAD_len value contains an
incorrect length for the SetAD_ver
version of the SetADcontainer
structure.

Check and correct all function
parameters.

121 EINVAL inet6_is_srcaddr • One or more invalid IPV6_ADDR_
PREFERENCES flags were specified

• A scope ID was omitted for a link
local IP address

• A scope ID was specified for an IP
address that is not link-local

• The socket address length was not
valid

Correct the function parameters

122 ECLOSED

126 ENMELONG

134 ENOSYS IOCTL The function is not implemented Either configure the system to support
the ioctl command or remove the ioctl
command from your program.

134 ENOSYS IOCTL - siocgifnameindex The TCP/IP stack processing the
siocgifnameindex IOCTL is configured
as a pure IPv4 TCP/IP stack.
Additionally, UNIX System Services is
configured to process as INET.

Either configure the system to support
the ioctl command or remove the ioctl
command from your program.

136 ENOTEMPT

145 E2BIG All The argument list is too long. Eliminate excessive number of
arguments.

156 EMVSINITIAL All Process initialization error.

This indicates an z/OS UNIX process
initialization failure. This is usually
an indication that a proper OMVS
RACF® segment is not defined for the
user ID associated with application.
The RACF OMVS segment might not
be defined or might contain errors
such as an improper HOME() directory
specification.

Attempt to initialize again. After
ensuring that an OMVS Segment is
defined, if the errno is still returned,
call your MVS system programmer to
have IBM service contacted.

157 EMISSED

157 EMVSERR An MVS environmental or internal error
occurred.

Appendix A. Return codes 275

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

1002 EIBMSOCKOUTOFRANGE Socket, Accept, Takesocket A new socket cannot be created
because the MAXSOC value, which is
specified on the INITAPI call, has been
reached.

Take either one of the following actions:

• Verify whether all open sockets are
intended to be in use.

• Increase the MAXSOC value to a
value that is appropriate for the
current workload. If the default
value is currently being used, you
might be required to add the
INITAPI call.

1003 EIBMSOCKINUSE Socket A socket number assigned by the client
interface code is already in use.

Use a different socket descriptor.

1004 EIBMIUCVERR All The request failed because of an IUCV
error. This error is generated by the
client stub code.

Ensure IUCV/VMCF is functional.

1008 EIBMCONFLICT All This request conflicts with a request
already queued on the same socket.

Cancel the existing call or wait for its
completion before reissuing this call.

1009 EIBMCANCELLED All The request was canceled by the
CANCEL call.

Informational, no action needed.

1011 EIBMBADTCPNAME All A TCP/IP name that is not valid was
detected.

Correct the name specified in the
IBM_TCPIMAGE structure.

1011 EIBMBADTCPNAME Setibmopt A TCP/IP name that is not valid was
detected.

Correct the name specified in the
IBM_TCPIMAGE structure.

1011 EIBMBADTCPNAME INITAPI A TCP/IP name that is not valid was
detected.

Correct the name specified on the
IDENT option TCPNAME field.

1012 EIBMBADREQUESTCODE All A request code that is not valid was
detected.

Contact your system administrator.

1013 EIBMBADCONNECTIONSTATE All A connection token that is not valid was
detected; bad state.

Verify TCP/IP is active.

1014 EIBMUNAUTHORIZEDCALLER All An unauthorized caller specified an
authorized keyword.

Ensure user ID has authority for the
specified operation.

1015 EIBMBADCONNECTIONMATCH All A connection token that is not valid was
detected. There is no such connection.

Verify TCP/IP is active.

1016 EIBMTCPABEND All An abend occurred when TCP/IP was
processing this request.

Verify that TCP/IP has restarted.

1023 EIBMTERMERROR All Encountered a terminating error while
processing.

Call your system administrator.

1026 EIBMINVDELETE All Delete requestor did not create the
connection.

Delete the request from the process
that created it.

1027 EIBMINVSOCKET All A connection token that is not valid was
detected. No such socket exists.

Call your system programmer.

1028 EIBMINVTCPCONNECTION All Connection terminated by TCP/IP. The
token was invalidated by TCP/IP.

Reestablish the connection to TCP/IP.

1032 EIBMCALLINPROGRESS All Another call was already in progress. Reissue after previous call has
completed.

1036 EIBMNOACTIVETCP All TCP/IP is not installed or not active. Correct TCP/IP name used.

1036 EIBMNOACTIVETCP Select EIBMNOACTIVETCP Ensure TCP/IP is active.

1036 EIBMNOACTIVETCP Getibmopt No TCP/IP image was found. Ensure TCP/IP is active.

1037 EIBMINVTSRBUSERDATA All The request control block contained
data that is not valid.

Call your system programmer.

1038 EIBMINVUSERDATA All The request control block contained
user data that is not valid.

Check your function parameters and
call your system programmer.

1040 EIBMSELECTEXPOST SELECTEX SELECTEX passed an ECB that was
already posted.

Check whether the user's ECB was
already posted.

1112 ECANCEL

1162 ENOPARTNERINFO IOCTL (SIOCGPARTNERINFO) The partner resides in a TCP/IP stack
running a release that is earlier than
V1R12, or the partner is not in the
same sysplex.

Ensure that both endpoints reside
in TCP/IP stacks that are running
V1R12 or any later release, or check
and modify the socket descriptor.
If the partner is not in the same
sysplex, security credentials will not be
returned.

2001 EINVALIDRXSOCKETCALL REXX A syntax error occurred in the
RXSOCKET parameter list.

Correct the parameter list passed to the
REXX socket call.

276 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Table 49. Sockets ERRNOs (continued)

Error
numbe
r Message name

Socket
API type Error description Programmer's response

2002 ECONSOLEINTERRUPT REXX A console interrupt occurred. Retry the task.

2003 ESUBTASKINVALID REXX The subtask ID is incorrect. Correct the subtask ID on the
INITIALIZE call.

2004 ESUBTASKALREADYACTIVE REXX The subtask is already active. Issue the INITIALIZE call only once in
your program.

2005 ESUBTASKNOTACTIVE REXX The subtask is not active. Issue the INITIALIZE call before any
other socket call.

2006 ESOCKETNOTALLOCATED REXX The specified socket or needed control
block could not be allocated.

Increase the user storage allocation for
this job.

2007 EMAXSOCKETSREACHED REXX The maximum number of sockets has
been reached.

Increase the number of allocate
sockets, or decrease the number of
sockets used by your program.

2009 ESOCKETNOTDEFINED REXX The socket is not defined. Issue the SOCKET call before the call
that fails.

2011 EDOMAINSERVERFAILURE REXX A Domain Name Server failure
occurred.

Call your MVS system programmer.

2012 EINVALIDNAME REXX An incorrect name was received from
the TCP/IP server.

Call your MVS system programmer.

2013 EINVALIDCLIENTID REXX An incorrect clientid was received from
the TCP/IP server.

Call your MVS system programmer.

2014 ENIVALIDFILENAME REXX An error occurred during NUCEXT
processing.

Specify the correct translation table
file name, or verify that the translation
table is valid.

2016 EHOSTNOTFOUND REXX The host is not found. Call your MVS system programmer.

2017 EIPADDRNOTFOUND REXX Address not found. Call your MVS system programmer.

2019 ENORECOVERY REXX A non-recoverable failure occurred
during the Resolver's processing
of the GETHOSTBYADDR or
GETHOSTBYNAME call.

Contact the IBM support center.

2020 EINVALIDCOMBINATION REXX An invalid combination of IPV6_ADDR_
PREFERENCES flags was received from
the caller.

Correct the specified flags

2021 EOPTNAMEMISMATCH REXX The caller specified an OPTNAME that
is invalid for the LEVEL that it specified.

Correct either the OPTNAME or the
LEVEL.

2022 EFLAGSMISMATCH REXX The caller issued a GETADDRINFO
with conflicting FLAGS and EFLAGS
parameters: either AI_EXT_FLAGS was
specified with a null EFLAGS, or
AI_EXT_FLAGS was not specified but
EFLAGS was not null.

Correct either the FLAGS parameter
or the EFLAGS parameter. A non-null
EFLAGS should be specified if and only
if AI_EXT_FLAGS is specified in the
FLAGS.

2051 EFORMATERROR REXX The name server was unable to
interpret the query

Contact the IBM support center.

3412 ENODATA Message does not exist.

3416 ELINKED Stream is linked.

3419 ERECURSE Recursive attempt rejected.

3420 EASYNC Asynchronous I/O scheduled. This is
a normal, internal event that is NOT
returned to the user.

3448 EUNATCH The protocol required to support
the specified address family is not
available.

3464 ETERM Operation terminated.

3474 EUNKNOWN Unknown system state.

3495 EBADOBJ You attempted to reference an object
that does not exist.

3513 EOUTOFSTATE Protocol engine has received a
command that is not acceptable in its
current state.

Appendix A. Return codes 277

278 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Appendix B. Related protocol specifications

This appendix lists the related protocol specifications (RFCs) for TCP/IP. The Internet Protocol suite is
still evolving through requests for comments (RFC). New protocols are being designed and implemented
by researchers and are brought to the attention of the Internet community in the form of RFCs.
Some of these protocols are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular functions or protocols.
These become the de facto standards, on which the TCP/IP protocol suite is built.

RFCs are available at http://www.rfc-editor.org/rfc.html.

Draft RFCs that have been implemented in this and previous Communications Server releases are listed at
the end of this topic.

Many features of TCP/IP Services are based on the following RFCs:
RFC

Title and Author
RFC 652

Telnet output carriage-return disposition option D. Crocker
RFC 653

Telnet output horizontal tabstops option D. Crocker
RFC 654

Telnet output horizontal tab disposition option D. Crocker
RFC 655

Telnet output formfeed disposition option D. Crocker
RFC 657

Telnet output vertical tab disposition option D. Crocker
RFC 658

Telnet output linefeed disposition D. Crocker
RFC 698

Telnet extended ASCII option T. Mock
RFC 726

Remote Controlled Transmission and Echoing Telnet option J. Postel, D. Crocker
RFC 727

Telnet logout option M.R. Crispin
RFC 732

Telnet Data Entry Terminal option J.D. Day
RFC 733

Standard for the format of ARPA network text messages D. Crocker, J. Vittal, K.T. Pogran, D.A.
Henderson

RFC 734
SUPDUP Protocol M.R. Crispin

RFC 735
Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

RFC 736
Telnet SUPDUP option M.R. Crispin

RFC 749
Telnet SUPDUP—Output option B. Greenberg

RFC 765
File Transfer Protocol specification J. Postel

© Copyright IBM Corp. 2000, 2021 279

http://www.rfc-editor.org/rfc.html

RFC 768
User Datagram Protocol J. Postel

RFC 779
Telnet send-location option E. Killian

RFC 791
Internet Protocol J. Postel

RFC 792
Internet Control Message Protocol J. Postel

RFC 793
Transmission Control Protocol J. Postel

RFC 820
Assigned numbers J. Postel

RFC 823
DARPA Internet gateway R. Hinden, A. Sheltzer

RFC 826
Ethernet Address Resolution Protocol: Or converting network protocol addresses to 48.bit Ethernet
address for transmission on Ethernet hardware D. Plummer

RFC 854
Telnet Protocol Specification J. Postel, J. Reynolds

RFC 855
Telnet Option Specification J. Postel, J. Reynolds

RFC 856
Telnet Binary Transmission J. Postel, J. Reynolds

RFC 857
Telnet Echo Option J. Postel, J. Reynolds

RFC 858
Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

RFC 859
Telnet Status Option J. Postel, J. Reynolds

RFC 860
Telnet Timing Mark Option J. Postel, J. Reynolds

RFC 861
Telnet Extended Options: List Option J. Postel, J. Reynolds

RFC 862
Echo Protocol J. Postel

RFC 863
Discard Protocol J. Postel

RFC 864
Character Generator Protocol J. Postel

RFC 865
Quote of the Day Protocol J. Postel

RFC 868
Time Protocol J. Postel, K. Harrenstien

RFC 877
Standard for the transmission of IP datagrams over public data networks J.T. Korb

RFC 883
Domain names: Implementation specification P.V. Mockapetris

RFC 884
Telnet terminal type option M. Solomon, E. Wimmers

280 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 885
Telnet end of record option J. Postel

RFC 894
Standard for the transmission of IP datagrams over Ethernet networks C. Hornig

RFC 896
Congestion control in IP/TCP internetworks J. Nagle

RFC 903
Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul, M. Theimer

RFC 904
Exterior Gateway Protocol formal specification D. Mills

RFC 919
Broadcasting Internet Datagrams J. Mogul

RFC 922
Broadcasting Internet datagrams in the presence of subnets J. Mogul

RFC 927
TACACS user identification Telnet option B.A. Anderson

RFC 933
Output marking Telnet option S. Silverman

RFC 946
Telnet terminal location number option R. Nedved

RFC 950
Internet Standard Subnetting Procedure J. Mogul, J. Postel

RFC 952
DoD Internet host table specification K. Harrenstien, M. Stahl, E. Feinler

RFC 959
File Transfer Protocol J. Postel, J.K. Reynolds

RFC 961
Official ARPA-Internet protocols J.K. Reynolds, J. Postel

RFC 974
Mail routing and the domain system C. Partridge

RFC 1001
Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and methods NetBios
Working Group in the Defense Advanced Research Projects Agency, Internet Activities Board, End-to-
End Services Task Force

RFC 1002
Protocol Standard for a NetBIOS service on a TCP/UDP transport: Detailed specifications NetBios
Working Group in the Defense Advanced Research Projects Agency, Internet Activities Board, End-to-
End Services Task Force

RFC 1006
ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E. Cass

RFC 1009
Requirements for Internet gateways R. Braden, J. Postel

RFC 1011
Official Internet protocols J. Reynolds, J. Postel

RFC 1013
X Window System Protocol, version 11: Alpha update April 1987 R. Scheifler

RFC 1014
XDR: External Data Representation standard Sun Microsystems

RFC 1027
Using ARP to implement transparent subnet gateways S. Carl-Mitchell, J. Quarterman

Appendix B. Related protocol specifications 281

RFC 1032
Domain administrators guide M. Stahl

RFC 1033
Domain administrators operations guide M. Lottor

RFC 1034
Domain names—concepts and facilities P.V. Mockapetris

RFC 1035
Domain names—implementation and specification P.V. Mockapetris

RFC 1038
Draft revised IP security option M. St. Johns

RFC 1041
Telnet 3270 regime option Y. Rekhter

RFC 1042
Standard for the transmission of IP datagrams over IEEE 802 networks J. Postel, J. Reynolds

RFC 1043
Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda, T. Thompson

RFC 1044
Internet Protocol on Network System's HYPERchannel: Protocol specification K. Hardwick, J.
Lekashman

RFC 1053
Telnet X.3 PAD option S. Levy, T. Jacobson

RFC 1055
Nonstandard for transmission of IP datagrams over serial lines: SLIP J. Romkey

RFC 1057
RPC: Remote Procedure Call Protocol Specification: Version 2 Sun Microsystems

RFC 1058
Routing Information Protocol C. Hedrick

RFC 1060
Assigned numbers J. Reynolds, J. Postel

RFC 1067
Simple Network Management Protocol J.D. Case, M. Fedor, M.L. Schoffstall, J. Davin

RFC 1071
Computing the Internet checksum R.T. Braden, D.A. Borman, C. Partridge

RFC 1072
TCP extensions for long-delay paths V. Jacobson, R.T. Braden

RFC 1073
Telnet window size option D. Waitzman

RFC 1079
Telnet terminal speed option C. Hedrick

RFC 1085
ISO presentation services on top of TCP/IP based internets M.T. Rose

RFC 1091
Telnet terminal-type option J. VanBokkelen

RFC 1094
NFS: Network File System Protocol specification Sun Microsystems

RFC 1096
Telnet X display location option G. Marcy

RFC 1101
DNS encoding of network names and other types P. Mockapetris

282 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 1112
Host extensions for IP multicasting S.E. Deering

RFC 1113
Privacy enhancement for Internet electronic mail: Part I — message encipherment and authentication
procedures J. Linn

RFC 1118
Hitchhikers Guide to the Internet E. Krol

RFC 1122
Requirements for Internet Hosts—Communication Layers R. Braden, Ed.

RFC 1123
Requirements for Internet Hosts—Application and Support R. Braden, Ed.

RFC 1146
TCP alternate checksum options J. Zweig, C. Partridge

RFC 1155
Structure and identification of management information for TCP/IP-based internets M. Rose, K.
McCloghrie

RFC 1156
Management Information Base for network management of TCP/IP-based internets K. McCloghrie, M.
Rose

RFC 1157
Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M. Schoffstall, J. Davin

RFC 1158
Management Information Base for network management of TCP/IP-based internets: MIB-II M. Rose

RFC 1166
Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

RFC 1179
Line printer daemon protocol L. McLaughlin

RFC 1180
TCP/IP tutorial T. Socolofsky, C. Kale

RFC 1183
New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V. Mockapetris

RFC 1184
Telnet Linemode Option D. Borman

RFC 1186
MD4 Message Digest Algorithm R.L. Rivest

RFC 1187
Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

RFC 1188
Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D. Katz

RFC 1190
Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

RFC 1191
Path MTU discovery J. Mogul, S. Deering

RFC 1198
FYI on the X window system R. Scheifler

RFC 1207
FYI on Questions and Answers: Answers to commonly asked “experienced Internet user” questions G.
Malkin, A. Marine, J. Reynolds

RFC 1208
Glossary of networking terms O. Jacobsen, D. Lynch

Appendix B. Related protocol specifications 283

RFC 1213
Management Information Base for Network Management of TCP/IP-based internets: MIB-II K.
McCloghrie, M.T. Rose

RFC 1215
Convention for defining traps for use with the SNMP M. Rose

RFC 1227
SNMP MUX protocol and MIB M.T. Rose

RFC 1228
SNMP-DPI: Simple Network Management Protocol Distributed Program Interface G. Carpenter, B.
Wijnen

RFC 1229
Extensions to the generic-interface MIB K. McCloghrie

RFC 1230
IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

RFC 1231
IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

RFC 1236
IP to X.121 address mapping for DDN L. Morales, P. Hasse

RFC 1256
ICMP Router Discovery Messages S. Deering, Ed.

RFC 1267
Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

RFC 1268
Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

RFC 1269
Definitions of Managed Objects for the Border Gateway Protocol: Version 3 S. Willis, J. Burruss

RFC 1270
SNMP Communications Services F. Kastenholz, ed.

RFC 1285
FDDI Management Information Base J. Case

RFC 1315
Management Information Base for Frame Relay DTEs C. Brown, F. Baker, C. Carvalho

RFC 1321
The MD5 Message-Digest Algorithm R. Rivest

RFC 1323
TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

RFC 1325
FYI on Questions and Answers: Answers to Commonly Asked "New Internet User" Questions G. Malkin,
A. Marine

RFC 1327
Mapping between X.400 (1988)/ISO 10021 and RFC 822 S. Hardcastle-Kille

RFC 1340
Assigned Numbers J. Reynolds, J. Postel

RFC 1344
Implications of MIME for Internet Mail Gateways N. Bornstein

RFC 1349
Type of Service in the Internet Protocol Suite P. Almquist

RFC 1351
SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

284 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 1352
SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

RFC 1353
Definitions of Managed Objects for Administration of SNMP Parties K. McCloghrie, J. Davin, J. Galvin

RFC 1354
IP Forwarding Table MIB F. Baker

RFC 1356
Multiprotocol Interconnect® on X.25 and ISDN in the Packet Mode A. Malis, D. Robinson, R. Ullmann

RFC 1358
Charter of the Internet Architecture Board (IAB) L. Chapin

RFC 1363
A Proposed Flow Specification C. Partridge

RFC 1368
Definition of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K. McCloghrie

RFC 1372
Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

RFC 1374
IP and ARP on HIPPI J. Renwick, A. Nicholson

RFC 1381
SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

RFC 1382
SNMP MIB Extension for the X.25 Packet Layer D. Throop

RFC 1387
RIP Version 2 Protocol Analysis G. Malkin

RFC 1388
RIP Version 2 Carrying Additional Information G. Malkin

RFC 1389
RIP Version 2 MIB Extensions G. Malkin, F. Baker

RFC 1390
Transmission of IP and ARP over FDDI Networks D. Katz

RFC 1393
Traceroute Using an IP Option G. Malkin

RFC 1398
Definitions of Managed Objects for the Ethernet-Like Interface Types F. Kastenholz

RFC 1408
Telnet Environment Option D. Borman, Ed.

RFC 1413
Identification Protocol M. St. Johns

RFC 1416
Telnet Authentication Option D. Borman, ed.

RFC 1420
SNMP over IPX S. Bostock

RFC 1428
Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G. Vaudreuil

RFC 1442
Structure of Management Information for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1443
Textual Conventions for version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

Appendix B. Related protocol specifications 285

RFC 1445
Administrative Model for version 2 of the Simple Network Management Protocol (SNMPv2) J. Galvin, K.
McCloghrie

RFC 1447
Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2) K. McCloghrie, J. Galvin

RFC 1448
Protocol Operations for version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 1464
Using the Domain Name System to Store Arbitrary String Attributes R. Rosenbaum

RFC 1469
IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483
Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha Heinanen

RFC 1514
Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516
Definitions of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K. McCloghrie

RFC 1521
MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies N. Borenstein, N. Freed

RFC 1535
A Security Problem and Proposed Correction With Widely Deployed DNS Software E. Gavron

RFC 1536
Common DNS Implementation Errors and Suggested Fixes A. Kumar, J. Postel, C. Neuman, P. Danzig, S.
Miller

RFC 1537
Common DNS Data File Configuration Errors P. Beertema

RFC 1540
Internet Official Protocol Standards J. Postel

RFC 1571
Telnet Environment Option Interoperability Issues D. Borman

RFC 1572
Telnet Environment Option S. Alexander

RFC 1573
Evolution of the Interfaces Group of MIB-II K. McCloghrie, F. Kastenholz

RFC 1577
Classical IP and ARP over ATM M. Laubach

RFC 1583
OSPF Version 2 J. Moy

RFC 1591
Domain Name System Structure and Delegation J. Postel

RFC 1592
Simple Network Management Protocol Distributed Protocol Interface Version 2.0 B. Wijnen, G.
Carpenter, K. Curran, A. Sehgal, G. Waters

RFC 1594
FYI on Questions and Answers— Answers to Commonly Asked "New Internet User" Questions A. Marine,
J. Reynolds, G. Malkin

RFC 1644
T/TCP — TCP Extensions for Transactions Functional Specification R. Braden

286 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 1646
TN3270 Extensions for LUname and Printer Selection C. Graves, T. Butts, M. Angel

RFC 1647
TN3270 Enhancements B. Kelly

RFC 1652
SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker

RFC 1664
Using the Internet DNS to Distribute RFC1327 Mail Address Mapping Tables C. Allochio, A. Bonito, B.
Cole, S. Giordano, R. Hagens

RFC 1693
An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P. Conrad

RFC 1695
Definitions of Managed Objects for ATM Management Version 8.0 using SMIv2 M. Ahmed, K. Tesink

RFC 1701
Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P. Traina

RFC 1702
Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D. Farinacci, P. Traina

RFC 1706
DNS NSAP Resource Records B. Manning, R. Colella

RFC 1712
DNS Encoding of Geographical Location C. Farrell, M. Schulze, S. Pleitner D. Baldoni

RFC 1713
Tools for DNS debugging A. Romao

RFC 1723
RIP Version 2—Carrying Additional Information G. Malkin

RFC 1752
The Recommendation for the IP Next Generation Protocol S. Bradner, A. Mankin

RFC 1766
Tags for the Identification of Languages H. Alvestrand

RFC 1771
A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

RFC 1794
DNS Support for Load Balancing T. Brisco

RFC 1819
Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version ST2+ L. Delgrossi, L. Berger
Eds.

RFC 1826
IP Authentication Header R. Atkinson

RFC 1828
IP Authentication using Keyed MD5 P. Metzger, W. Simpson

RFC 1829
The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

RFC 1830
SMTP Service Extensions for Transmission of Large and Binary MIME Messages G. Vaudreuil

RFC 1831
RPC: Remote Procedure Call Protocol Specification Version 2 R. Srinivasan

RFC 1832
XDR: External Data Representation Standard R. Srinivasan

RFC 1833
Binding Protocols for ONC RPC Version 2 R. Srinivasan

Appendix B. Related protocol specifications 287

RFC 1850
OSPF Version 2 Management Information Base F. Baker, R. Coltun

RFC 1854
SMTP Service Extension for Command Pipelining N. Freed

RFC 1869
SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker

RFC 1870
SMTP Service Extension for Message Size Declaration J. Klensin, N. Freed, K. Moore

RFC 1876
A Means for Expressing Location Information in the Domain Name System C. Davis, P. Vixie, T. Goodwin,
I. Dickinson

RFC 1883
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 1884
IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

RFC 1886
DNS Extensions to support IP version 6 S. Thomson, C. Huitema

RFC 1888
OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J. Houldsworth, A. Lloyd

RFC 1891
SMTP Service Extension for Delivery Status Notifications K. Moore

RFC 1892
The Multipart/Report Content Type for the Reporting of Mail System Administrative Messages G.
Vaudreuil

RFC 1894
An Extensible Message Format for Delivery Status NotificationsK. Moore, G. Vaudreuil

RFC 1901
Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1902
Structure of Management Information for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1903
Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 1904
Conformance Statements for Version 2 of the Simple Network Management Protocol (SNMPv2) J. Case,
K. McCloghrie, M. Rose, S. Waldbusser

RFC 1905
Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 1906
Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2) J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 1907
Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2) J.
Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1908
Coexistence between Version 1 and Version 2 of the Internet-standard Network Management
Framework J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1912
Common DNS Operational and Configuration Errors D. Barr

288 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 1918
Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D. Karrenberg, G.J. de Groot, E. Lear

RFC 1928
SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, L. Jones

RFC 1930
Guidelines for creation, selection, and registration of an Autonomous System (AS) J. Hawkinson, T.
Bates

RFC 1939
Post Office Protocol-Version 3 J. Myers, M. Rose

RFC 1981
Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

RFC 1982
Serial Number Arithmetic R. Elz, R. Bush

RFC 1985
SMTP Service Extension for Remote Message Queue Starting J. De Winter

RFC 1995
Incremental Zone Transfer in DNS M. Ohta

RFC 1996
A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P. Vixie

RFC 2010
Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011
SNMPv2 Management Information Base for the Internet Protocol using SMIv2 K. McCloghrie, Ed.

RFC 2012
SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2 K.
McCloghrie, Ed.

RFC 2013
SNMPv2 Management Information Base for the User Datagram Protocol using SMIv2 K. McCloghrie, Ed.

RFC 2018
TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S. Floyd, A. Romanow

RFC 2026
The Internet Standards Process — Revision 3 S. Bradner

RFC 2030
Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI D. Mills

RFC 2033
Local Mail Transfer Protocol J. Myers

RFC 2034
SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040
The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR. Baldwin, R. Rivest

RFC 2045
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies N. Freed, N.
Borenstein

RFC 2052
A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen, P. Vixie

RFC 2065
Domain Name System Security Extensions D. Eastlake 3rd, C. Kaufman

RFC 2066
TELNET CHARSET Option R. Gellens

Appendix B. Related protocol specifications 289

RFC 2080
RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096
IP Forwarding Table MIB F. Baker

RFC 2104
HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare, R. Canetti

RFC 2119
Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2133
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, W. Stevens

RFC 2136
Dynamic Updates in the Domain Name System (DNS UPDATE) P. Vixie, Ed., S. Thomson, Y. Rekhter, J.
Bound

RFC 2137
Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163
Using the Internet DNS to Distribute MIXER Conformant Global Address Mapping (MCGAM) C. Allocchio

RFC 2168
Resolution of Uniform Resource Identifiers using the Domain Name System R. Daniel, M. Mealling

RFC 2178
OSPF Version 2 J. Moy

RFC 2181
Clarifications to the DNS Specification R. Elz, R. Bush

RFC 2205
Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification R. Braden, Ed., L. Zhang, S.
Berson, S. Herzog, S. Jamin

RFC 2210
The Use of RSVP with IETF Integrated Services J. Wroclawski

RFC 2211
Specification of the Controlled-Load Network Element Service J. Wroclawski

RFC 2212
Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R. Guerin

RFC 2215
General Characterization Parameters for Integrated Service Network Elements S. Shenker, J.
Wroclawski

RFC 2217
Telnet Com Port Control Option G. Clarke

RFC 2219
Use of DNS Aliases for Network Services M. Hamilton, R. Wright

RFC 2228
FTP Security Extensions M. Horowitz, S. Lunt

RFC 2230
Key Exchange Delegation Record for the DNS R. Atkinson

RFC 2233
The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

RFC 2240
A Legal Basis for Domain Name Allocation O. Vaughn

RFC 2246
The TLS Protocol Version 1.0 T. Dierks, C. Allen

290 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 2251
Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

RFC 2253
Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names M.
Wahl, S. Kille, T. Howes

RFC 2254
The String Representation of LDAP Search Filters T. Howes

RFC 2261
An Architecture for Describing SNMP Management Frameworks D. Harrington, R. Presuhn, B. Wijnen

RFC 2262
Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) J. Case, D.
Harrington, R. Presuhn, B. Wijnen

RFC 2271
An Architecture for Describing SNMP Management Frameworks D. Harrington, R. Presuhn, B. Wijnen

RFC 2273
SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

RFC 2274
User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
U. Blumenthal, B. Wijnen

RFC 2275
View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) B.
Wijnen, R. Presuhn, K. McCloghrie

RFC 2279
UTF-8, a transformation format of ISO 10646 F. Yergeau

RFC 2292
Advanced Sockets API for IPv6 W. Stevens, M. Thomas

RFC 2308
Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

RFC 2317
Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

RFC 2320
Definitions of Managed Objects for Classical IP and ARP Over ATM Using SMIv2 (IPOA-MIB) M. Greene,
J. Luciani, K. White, T. Kuo

RFC 2328
OSPF Version 2 J. Moy

RFC 2345
Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G. Oglesby

RFC 2352
A Convention for Using Legal Names as Domain Names O. Vaughn

RFC 2355
TN3270 Enhancements B. Kelly

RFC 2358
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J. Johnson

RFC 2373
IP Version 6 Addressing Architecture R. Hinden, S. Deering

RFC 2374
An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O'Dell, S. Deering

RFC 2375
IPv6 Multicast Address Assignments R. Hinden, S. Deering

Appendix B. Related protocol specifications 291

RFC 2385
Protection of BGP Sessions via the TCP MD5 Signature Option A. Hefferman

RFC 2389
Feature negotiation mechanism for the File Transfer Protocol P. Hethmon, R. Elz

RFC 2401
Security Architecture for Internet Protocol S. Kent, R. Atkinson

RFC 2402
IP Authentication Header S. Kent, R. Atkinson

RFC 2403
The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

RFC 2404
The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R. Glenn

RFC 2405
The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N. Doraswamy

RFC 2406
IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

RFC 2407
The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

RFC 2408
Internet Security Association and Key Management Protocol (ISAKMP) D. Maughan, M. Schertler, M.
Schneider, J. Turner

RFC 2409
The Internet Key Exchange (IKE) D. Harkins, D. Carrel

RFC 2410
The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S. Kent,

RFC 2428
FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

RFC 2445
Internet Calendaring and Scheduling Core Object Specification (iCalendar) F. Dawson, D. Stenerson

RFC 2459
Internet X.509 Public Key Infrastructure Certificate and CRL Profile R. Housley, W. Ford, W. Polk, D. Solo

RFC 2460
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 2461
Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W. Simpson

RFC 2462
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

RFC 2463
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification A.
Conta, S. Deering

RFC 2464
Transmission of IPv6 Packets over Ethernet Networks M. Crawford

RFC 2466
Management Information Base for IP Version 6: ICMPv6 Group D. Haskin, S. Onishi

RFC 2476
Message Submission R. Gellens, J. Klensin

RFC 2487
SMTP Service Extension for Secure SMTP over TLS P. Hoffman

RFC 2505
Anti-Spam Recommendations for SMTP MTAs G. Lindberg

292 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 2523
Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

RFC 2535
Domain Name System Security Extensions D. Eastlake 3rd

RFC 2538
Storing Certificates in the Domain Name System (DNS) D. Eastlake 3rd, O. Gudmundsson

RFC 2539
Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D. Eastlake 3rd

RFC 2540
Detached Domain Name System (DNS) Information D. Eastlake 3rd

RFC 2554
SMTP Service Extension for Authentication J. Myers

RFC 2570
Introduction to Version 3 of the Internet-standard Network Management Framework J. Case, R. Mundy,
D. Partain, B. Stewart

RFC 2571
An Architecture for Describing SNMP Management Frameworks B. Wijnen, D. Harrington, R. Presuhn

RFC 2572
Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) J. Case, D.
Harrington, R. Presuhn, B. Wijnen

RFC 2573
SNMP Applications D. Levi, P. Meyer, B. Stewart

RFC 2574
User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
U. Blumenthal, B. Wijnen

RFC 2575
View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) B.
Wijnen, R. Presuhn, K. McCloghrie

RFC 2576
Co-Existence between Version 1, Version 2, and Version 3 of the Internet-standard Network
Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 2578
Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2579
Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2580
Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2581
TCP Congestion Control M. Allman, V. Paxson, W. Stevens

RFC 2583
Guidelines for Next Hop Client (NHC) Developers R. Carlson, L. Winkler

RFC 2591
Definitions of Managed Objects for Scheduling Management Operations D. Levi, J. Schoenwaelder

RFC 2625
IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W. Rickard

RFC 2635
Don't SPEW A Set of Guidelines for Mass Unsolicited Mailings and Postings (spam*) S. Hambridge, A.
Lunde

RFC 2637
Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, G. Zorn

Appendix B. Related protocol specifications 293

RFC 2640
Internationalization of the File Transfer Protocol B. Curtin

RFC 2665
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J. Johnson

RFC 2671
Extension Mechanisms for DNS (EDNS0) P. Vixie

RFC 2672
Non-Terminal DNS Name Redirection M. Crawford

RFC 2675
IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710
Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B. Haberman

RFC 2711
IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740
OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

RFC 2753
A Framework for Policy-based Admission Control R. Yavatkar, D. Pendarakis, R. Guerin

RFC 2782
A DNS RR for specifying the location of services (DNS SRV) A. Gubrandsen, P. Vixix, L. Esibov

RFC 2821
Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822
Internet Message Format P. Resnick, Ed.

RFC 2840
TELNET KERMIT OPTION J. Altman, F. da Cruz

RFC 2845
Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O. Gudmundsson, D. Eastlake 3rd, B.
Wellington

RFC 2851
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman, S. Routhier, J.
Schoenwaelder

RFC 2852
Deliver By SMTP Service Extension D. Newman

RFC 2874
DNS Extensions to Support IPv6 Address Aggregation and Renumbering M. Crawford, C. Huitema

RFC 2915
The Naming Authority Pointer (NAPTR) DNS Resource Record M. Mealling, R. Daniel

RFC 2920
SMTP Service Extension for Command Pipelining N. Freed

RFC 2930
Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941
Telnet Authentication Option T. Ts'o, ed., J. Altman

RFC 2942
Telnet Authentication: Kerberos Version 5 T. Ts'o

RFC 2946
Telnet Data Encryption Option T. Ts'o

RFC 2952
Telnet Encryption: DES 64 bit Cipher Feedback T. Ts'o

294 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 2953
Telnet Encryption: DES 64 bit Output Feedback T. Ts'o

RFC 2992
Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019
IP Version 6 Management Information Base for The Multicast Listener Discovery Protocol B. Haberman,
R. Worzella

RFC 3060
Policy Core Information Model—Version 1 Specification B. Moore, E. Ellesson, J. Strassner, A.
Westerinen

RFC 3152
Delegation of IP6.ARPA R. Bush

RFC 3164
The BSD Syslog Protocol C. Lonvick

RFC 3207
SMTP Service Extension for Secure SMTP over Transport Layer Security P. Hoffman

RFC 3226
DNSSEC and IPv6 A6 aware server/resolver message size requirements O. Gudmundsson

RFC 3291
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman, S. Routhier, J.
Schoenwaelder

RFC 3363
Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name System R. Bush, A.
Durand, B. Fink, O. Gudmundsson, T. Hain

RFC 3376
Internet Group Management Protocol, Version 3 B. Cain, S. Deering, I. Kouvelas, B. Fenner, A.
Thyagarajan

RFC 3390
Increasing TCP's Initial Window M. Allman, S. Floyd, C. Partridge

RFC 3410
Introduction and Applicability Statements for Internet-Standard Management Framework J. Case, R.
Mundy, D. Partain, B. Stewart

RFC 3411
An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks
D. Harrington, R. Presuhn, B. Wijnen

RFC 3412
Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) J. Case, D.
Harrington, R. Presuhn, B. Wijnen

RFC 3413
Simple Network Management Protocol (SNMP) Applications D. Levi, P. Meyer, B. Stewart

RFC 3414
User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
U. Blumenthal, B. Wijnen

RFC 3415
View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) B.
Wijnen, R. Presuhn, K. McCloghrie

RFC 3416
Version 2 of the Protocol Operations for the Simple Network Management Protocol (SNMP) R. Presuhn,
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

Appendix B. Related protocol specifications 295

RFC 3417
Transport Mappings for the Simple Network Management Protocol (SNMP) R. Presuhn, J. Case, K.
McCloghrie, M. Rose, S. Waldbusser

RFC 3418
Management Information Base (MIB) for the Simple Network Management Protocol (SNMP) R. Presuhn,
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 3419
Textual Conventions for Transport Addresses M. Daniele, J. Schoenwaelder

RFC 3484
Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

RFC 3493
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, J. McCann, W. Stevens

RFC 3513
Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S. Deering

RFC 3526
More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE) T. Kivinen, M.
Kojo

RFC 3542
Advanced Sockets Application Programming Interface (API) for IPv6 W. Richard Stevens, M. Thomas, E.
Nordmark, T. Jinmei

RFC 3566
The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec S. Frankel, H. Herbert

RFC 3569
An Overview of Source-Specific Multicast (SSM) S. Bhattacharyya, Ed.

RFC 3584
Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management
Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 3602
The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R. Glenn, S. Kelly

RFC 3629
UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658
Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3678
Socket Interface Extensions for Multicast Source Filters D. Thaler, B. Fenner, B. Quinn

RFC 3715
IPsec-Network Address Translation (NAT) Compatibility Requirements B. Aboba, W. Dixon

RFC 3810
Multicast Listener Discovery Version 2 (MLDv2) for IPv6 R. Vida, Ed., L. Costa, Ed.

RFC 3826
The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model U.
Blumenthal, F. Maino, K McCloghrie.

RFC 3947
Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A. Huttunen, V. Volpe

RFC 3948
UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V. Volpe, L. DiBurro, M. Stenberg

RFC 4001
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman, S. Routhier, J.
Schoenwaelder

RFC 4007
IPv6 Scoped Address Architecture S. Deering, B. Haberman, T. Jinmei, E. Nordmark, B. Zill

296 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RFC 4022
Management Information Base for the Transmission Control Protocol (TCP) R. Raghunarayan

RFC 4106
The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP) J. Viega, D.
McGrew

RFC 4109
Algorithms for Internet Key Exchange version 1 (IKEv1) P. Hoffman

RFC 4113
Management Information Base for the User Datagram Protocol (UDP) B. Fenner, J. Flick

RFC 4191
Default Router Preferences and More-Specific Routes R. Draves, D. Thaler

RFC 4217
Securing FTP with TLS P. Ford-Hutchinson

RFC 4292
IP Forwarding Table MIB B. Haberman

RFC 4293
Management Information Base for the Internet Protocol (IP) S. Routhier

RFC 4301
Security Architecture for the Internet Protocol S. Kent, K. Seo

RFC 4302
IP Authentication Header S. Kent

RFC 4303
IP Encapsulating Security Payload (ESP) S. Kent

RFC 4304
Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet
Security Association and Key Management Protocol (ISAKMP) S. Kent

RFC 4307
Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2) J. Schiller

RFC 4308
Cryptographic Suites for IPsec P. Hoffman

RFC 4434
The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol P. Hoffman

RFC 4443
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification A.
Conta, S. Deering

RFC 4552
Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

RFC 4678
Server/Application State Protocol v1 A. Bivens

RFC 4753
ECP Groups for IKE and IKEv2 D. Fu, J. Solinas

RFC 4754
IKE and IKEv2 Authentication Using the Elliptic Curve Digital Signature Algorithm (ECDSA) D. Fu, J.
Solinas

RFC 4809
Requirements for an IPsec Certificate Management Profile C. Bonatti, Ed., S. Turner, Ed., G. Lebovitz,
Ed.

RFC 4835
Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and
Authentication Header (AH) V. Manral

Appendix B. Related protocol specifications 297

RFC 4862
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten, T. Jinmei

RFC 4868
Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec S. Kelly, S. Frankel

RFC 4869
Suite B Cryptographic Suites for IPsec L. Law, J. Solinas

RFC 4941
Privacy Extensions for Stateless Address Autoconfiguration in IPv6 T. Narten, R. Draves, S. Krishnan

RFC 4945
The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX B. Korver

RFC 5014
IPv6 Socket API for Source Address Selection E. Nordmark, S. Chakrabarti, J. Laganier

RFC 5095
Deprecation of Type 0 Routing Headers in IPv6 J. Abley, P. Savola, G. Neville-Neil

RFC 5175
IPv6 Router Advertisement Flags Option B. Haberman, Ed., R. Hinden

RFC 5282
Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange
version 2 (IKEv2) Protocol D. Black, D. McGrew

RFC 5996
Internet Key Exchange Protocol Version 2 (IKEv2) C. Kaufman, P. Hoffman, Y. Nir, P. Eronen

RFC 7627
Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension K. Bhargavan, A.
Delignat-Lavaud, A. Pironti, Inria Paris-Rocquencourt, A. Langley, M. Ray

RFC 8446
The Transport Layer Security (TLS) Protocol Version 1.3 E. Rescorla

Internet drafts
Internet drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Other groups can also distribute working documents as Internet drafts. You can see
Internet drafts at http://www.ietf.org/ID.html.

298 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

http://www.ietf.org/ID.html

Appendix C. Accessibility

Publications for this product are offered in Adobe Portable Document Format (PDF) and should be
compliant with accessibility standards. If you experience difficulties when using PDF files, you can view
the information through the z/OS Internet Library website http://www.ibm.com/systems/z/os/zos/library/
bkserv/ or IBM Documentation https://www.ibm.com/docs/en. If you continue to experience problems,
send a message to Contact z/OS web page(www.ibm.com/systems/z/os/zos/webqs.html) or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully. The major accessibility features in z/OS enable users to:

• Use assistive technologies such as screen readers and screen magnifier software
• Operate specific or equivalent features using only the keyboard
• Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user interfaces found in z/OS.
Consult the assistive technology documentation for specific information when using such products to
access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. See z/OS TSO/E Primer, z/OS TSO/E User's
Guide, and z/OS ISPF User's Guide Vol I for information about accessing TSO/E and ISPF interfaces.
These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

z/OS information
One exception is command syntax that is published in railroad track format, which is accessible using
screen readers with IBM Documentation, as described in “Dotted decimal syntax diagrams” on page 299.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing IBM Documentation using a
screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more
syntax elements are always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that your screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you know that
your syntax can include either USERID or SYSTEMID, but not both.

© Copyright IBM Corp. 2000, 2021 299

http://www.ibm.com/systems/z/os/zos/library/bkserv/
http://www.ibm.com/systems/z/os/zos/library/bkserv/
https://www.ibm.com/docs/en

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE indicates
that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item,
or on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol giving information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN,
and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements,
the elements must be separated by a comma. If no separator is given, assume that you use a blank to
separate each syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is defined elsewhere. The
string following the % symbol is the name of a syntax fragment rather than a literal. For example, the line
2.1 %OP1 means that you should see separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

• A question mark (?) means an optional syntax element. A dotted decimal number followed by the ?
symbol indicates that all the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal
number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a
line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5
NOTIFY, and 5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional; that is, you
can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

• An exclamation mark (!) means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicate that the syntax element is the default option for all syntax
elements that share the same dotted decimal number. Only one of the syntax elements that share the
same dotted decimal number can specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1!
(KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In this
example, if you include the FILE keyword but do not specify an option, default option KEEP will be
applied. A default option also applies to the next higher dotted decimal number. In this example, if the
FILE keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP applies only to the next higher dotted decimal
number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is
used if the keyword FILE is omitted.

• An asterisk (*) means a syntax element that can be repeated 0 or more times. A dotted decimal number
followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it
is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can
include one data area, more than one data area, or no data area. If you hear the lines 3*, 3 HOST, and 3
STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than once
each. In the previous example, you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

300 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

• + means a syntax element that must be included one or more times. A dotted decimal number followed
by the + symbol indicates that this syntax element must be included one or more times; that is, it must
be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you
must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you
must include HOST, STATE, or both. Similar to the * symbol, the + symbol can only repeat a particular
item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent
to a loop-back line in a railroad syntax diagram.

Appendix C. Accessibility 301

302 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 United
States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation Site Counsel 2455 South Road Poughkeepsie, NY 12601-5400 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 2000, 2021 303

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

304 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com®/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Notices 305

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

306 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

http://www.ibm.com/legal/copytrade.shtml

Bibliography

This bibliography contains descriptions of the documents in the z/OS Communications Server library.

z/OS Communications Server documentation is available online at the z/OS Internet Library web page at
http://www.ibm.com/systems/z/os/zos/library/bkserv/.

z/OS Communications Server library updates
Updates to documents are also available on RETAIN and in information APARs (info APARs). Go to https://
www.ibm.com/mysupport to view information APARs.

• z/OS Communications Server V2R1 New Function APAR Summary
• z/OS Communications Server V2R2 New Function APAR Summary
• z/OS Communications Server V2R3 New Function APAR Summary
• z/OS Communications Server V2R4 New Function APAR Summary

z/OS Communications Server information
z/OS Communications Server product information is grouped by task in the following tables.

Planning
Title Number Description

z/OS Communications Server:
New Function Summary

GC27-3664 This document is intended to help you plan for new IP or
SNA functions, whether you are migrating from a previous
version or installing z/OS for the first time. It summarizes
what is new in the release and identifies the suggested
and required modifications needed to use the enhanced
functions.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC27-3663 This document is a high-level introduction to IPv6. It
describes concepts of z/OS Communications Server's
support of IPv6, coexistence with IPv4, and migration
issues.

Resource definition, configuration, and tuning
Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC27-3650 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS UNIX
System Services, and IBM Time Sharing Option (TSO)
is recommended. Use this document with the z/OS
Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2000, 2021 307

http://www.ibm.com/systems/z/os/zos/library/bkserv/
https://www.ibm.com/mysupport
https://www.ibm.com/mysupport
http://www.ibm.com/software/support/systemsz/cs-v2r1-new-func-apars.html
http://www.ibm.com/software/support/systemsz/cs-v2r2-new-func-apars.html
http://www.ibm.com/software/support/systemsz/cs-v2r3-new-func-apars.html
https://www.ibm.com/support/pages/node/959247

Title Number Description

z/OS Communications Server:
IP Configuration Reference

SC27-3651 This document presents information for people who want
to administer and maintain IP. Use this document with the
z/OS Communications Server: IP Configuration Guide. The
information in this document includes:

• TCP/IP configuration data sets
• Configuration statements
• Translation tables
• Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC27-3672 This document presents the major concepts involved in
implementing an SNA network. Use this document with
the z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC27-3675 This document describes each SNA definition statement,
start option, and macroinstruction for user tables. It also
describes NCP definition statements that affect SNA. Use
this document with the z/OS Communications Server: SNA
Network Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC27-3676 This document contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server:
IP Network Print Facility

SC27-3658 This document is for systems programmers and network
administrators who need to prepare their network to route
SNA, JES2, or JES3 printer output to remote printers using
TCP/IP Services.

Operation
Title Number Description

z/OS Communications Server:
IP User's Guide and
Commands

SC27-3662 This document describes how to use TCP/IP applications.
It contains requests with which a user can log on to a
remote host using Telnet, transfer data sets using FTP, send
electronic mail, print on remote printers, and authenticate
network users.

z/OS Communications Server:
IP System Administrator's
Commands

SC27-3661 This document describes the functions and commands
helpful in configuring or monitoring your system. It contains
system administrator's commands, such as TSO NETSTAT,
PING, TRACERTE and their UNIX counterparts. It also
includes TSO and MVS commands commonly used during
the IP configuration process.

z/OS Communications Server:
SNA Operation

SC27-3673 This document serves as a reference for programmers
and operators requiring detailed information about specific
operator commands.

z/OS Communications Server:
Quick Reference

SC27-3665 This document contains essential information about SNA
and IP commands.

308 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Customization
Title Number Description

z/OS Communications Server:
SNA Customization

SC27-3666 This document enables you to customize SNA, and includes
the following information:

• Communication network management (CNM) routing table
• Logon-interpret routine requirements
• Logon manager installation-wide exit routine for the CLU

search exit
• TSO/SNA installation-wide exit routines
• SNA installation-wide exit routines

Writing application programs
Title Number Description

z/OS Communications Server:
IP Sockets Application
Programming Interface Guide
and Reference

SC27-3660 This document describes the syntax and semantics of
program source code necessary to write your own
application programming interface (API) into TCP/IP. You
can use this interface as the communication base for
writing your own client or server application. You can also
use this document to adapt your existing applications to
communicate with each other using sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC27-3649 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the
socket interface for CICS using z/OS TCP/IP.

z/OS Communications Server:
IP IMS Sockets Guide

SC27-3653 This document is for programmers who want application
programs that use the IMS TCP/IP application development
services provided by the TCP/IP Services of IBM.

z/OS Communications Server:
IP Programmer's Guide and
Reference

SC27-3659 This document describes the syntax and semantics of a
set of high-level application functions that you can use to
program your own applications in a TCP/IP environment.
These functions provide support for application facilities,
such as user authentication, distributed databases,
distributed processing, network management, and device
sharing. Familiarity with the z/OS operating system,
TCP/IP protocols, and IBM Time Sharing Option (TSO) is
recommended.

z/OS Communications Server:
SNA Programming

SC27-3674 This document describes how to use SNA macroinstructions
to send data to and receive data from (1) a terminal in either
the same or a different domain, or (2) another application
program in either the same or a different domain.

z/OS Communications Server:
SNA Programmer's LU 6.2
Guide

SC27-3669 This document describes how to use the SNA LU 6.2
application programming interface for host application
programs. This document applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with other
session types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications Server:
SNA Programmer's LU 6.2
Reference

SC27-3670 This document provides reference material for the SNA LU
6.2 programming interface for host application programs.

Bibliography 309

Title Number Description

z/OS Communications Server:
CSM Guide

SC27-3647 This document describes how applications use the
communications storage manager.

Diagnosis
Title Number Description

z/OS Communications Server:
IP Diagnosis Guide

GC27-3652 This document explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in the
TCP/IP product code. It explains how to gather information
for and describe problems to the IBM Software Support
Center.

z/OS Communications Server:
ACF/TAP Trace Analysis
Handbook

GC27-3645 This document explains how to gather the trace data that is
collected and stored in the host processor. It also explains
how to use the Advanced Communications Function/Trace
Analysis Program (ACF/TAP) service aid to produce reports
for analyzing the trace data information.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures
and z/OS Communications
Server: SNA Diagnosis Vol 2,
FFST Dumps and the VIT

GC27-3667

GC27-3668

These documents help you identify an SNA problem, classify
it, and collect information about it before you call the IBM
Support Center. The information collected includes traces,
dumps, and other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be
used to read an SNA dump. They are intended for
IBM programming service representatives and customer
personnel who are diagnosing problems with SNA.

Messages and codes
Title Number Description

z/OS Communications Server:
SNA Messages

SC27-3671 This document describes the ELM, IKT, IST, IUT, IVT, and
USS messages. Other information in this document includes:

• Command and RU types in SNA messages
• Node and ID types in SNA messages
• Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC27-3654 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB,
EZD)

SC27-3655 This volume contains TCP/IP messages beginning with EZB
or EZD.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC27-3656 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server:
IP Messages Volume 4 (EZZ,
SNM)

SC27-3657 This volume contains TCP/IP messages beginning with EZZ
and SNM.

z/OS Communications Server:
IP and SNA Codes

SC27-3648 This document describes codes and other information that
appear in z/OS Communications Server messages.

310 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122

Index

A
accept 20
ACCEPT (call) 55
accessibility 299
active sockets 46
active sockets queue 25
ADDRSPC parameter 46
ADDRSPCPFX parameter 46
AF parameter on call interface, on SOCKET 180
alternate PCB 22
APPC 1
application data 22, 25
application data, explicit mode

data translation 30
end-of-message indicator 30
format 30
network byte order 30

application data, explicit-mode
format 37, 38
protocol 37, 38
translation 37, 38

application data, implicit-mode
data translation 32, 40
end-of-message 40
end-of-message indicator 32
format 32, 40

Application types
3270 1
client-server 1

ASCII to EBCDIC translation 30
ASMADLI 42
Assist module

role of 19
trade-offs 19
use of IMS message queue 19

B
BACKLOG parameter 46
BACKLOG parameter on call interface, LISTEN call 128
backlog queue 25
backlog queue, length 46
bb status code 40, 42
Berkeley Sockets

BSD 4.3 2
big-endian 30
BIND 20
BIND (call) 57
BIND2ADDRSEL (call) 59
bit-mask on call interface, on EZACIC06 call 191
bit-mask-length on call interface, on EZACIC06 call 191
BMP 46
BUF parameter on call socket interface

on GETIBMOPT 86
on READ 134
on RECV 138

BUF parameter on call socket interface (continued)
on RECVFROM 140
on SEND 155
on SENDTO 160
on WRITE 185

buffer full 34

C
C language

list of calls 17
CADLI 42
CALL Instruction Interface for Assembler, PL/I, and COBOL
51
Call Instructions for Assembler, PL/1, and COBOL Programs

ACCEPT 55
BIND 57
BIND2ADDRSEL 59
CLOSE 62
CONNECT 63
EZACIC04 188
EZACIC05 189
EZACIC06 190
EZACIC08 192
FCNTL 66
GETCLIENTID 76
GETHOSTBYADDR 77
GETHOSTBYNAME 80
GETHOSTID 83
GETHOSTNAME 83
GETIBMOPT 85
GETPEERNAME 91
GETSOCKNAME 93
GETSOCKOPT 95
GIVESOCKET 111
INET6_IS_SRCADDR 113
INITAPI 116
IOCTL 118
LISTEN 127
READ 133
READV 134
RECV 136
RECVFROM 138
RECVMSG 141
SELECT 145
SELECTEX 149
SENDMSG 155
SENDTO 159
SETSOCKOPT 161
SHUTDOWN 178
SOCKET 179
TAKESOCKET 182
TERMAPI 183
WRITE 184
WRITEV 185

Call Instructions for Assembler, PL/I, and COBOL Programs
EZACIC14 197

Index 311

Call Instructions for Assembler, PL/I, and COBOL Programs (continued)
EZACIC15 198

call interface sample PL/I programs 200
call sequence, explicit-mode client 30
CBLADLI 42
CHAR-MASK parameter on call interface, on EZACIC06 191
child server 9
CHNG 22
client

defined 29
explicit-mode 29
logic flow 29

client call sequence, implicit-mode 30
CLIENT parameter on call socket interface

on GETCLIENTID 77
on GIVESOCKET 112
on TAKESOCKET 183

client-server 1
client/server processing 4
COBOL language

list of calls 17
codes, RSM reason 34
COMMAND parameter on call interface, IOCTL call 119
COMMAND parameter on call socket interface

on EZACIC06 191
on FCNTL 67
on GETIBMOPT 86

COMMIT 37, 38
commit database updates 22
commit, explicit-mode 29
Communications Server for z/OS, online information xxiv
complete-status message 35
concurrent server

defined 8
illustrated 8, 9

configuration file 46
configuring IMS TCP/IP 49
connection, how established 20
conversation, TCP/IP 20
CSMOKY 33, 35
CSMOKY message 30

D
data translation

explicit-mode 30
data translation, socket interface

ASCII to EBCDIC 189
bit-mask to character 190
character to bit-mask 190
EBCDIC to ASCII 188, 197

data, application 22, 25
database calls 22
database updates, commit 22
DataLen 47
DataType 47
disability 299
DNS, online information xxv

E
EBCDIC to ASCII translation 30
ERETMSK parameter on call interface, on SELECT 149

ERRNO parameter on call socket interface
on ACCEPT 57
on BIND 59
on BIND2ADDRSEL 62
on CLOSE 63
on CONNECT 66
on FCNTL 67
on GETCLIENTID 77
on GETHOSTNMAE 84
on GETIBMOPT 87
on GETPEERNAME 93
on GETSOCKNAME 95
on GETSOCKOPT 110
on GIVESOCKET 113
on INET6_IS_SRCADDR 115
on INITAPI 118
on IOCTL 127
on LISTEN 129
on READ 134
on READV 136
on RECV 138
on RECVFROM 141
on RECVMSG 145
on SELECT 149
on SELECTEX 153
on SEND 155
on SENDMSG 159
on SENDTO 161
on SETSOCKOPT 177
on SHUTDOWN 179
on SOCKET 181
on TAKESOCKET 183
on WRITE 185
on WRITEV 187

ERRNO parameter on macro socket interface
on FCNTL 68, 76

ESDNMASK parameter on call interface, on SELECT 148
EWOULDBLOCK error return, call interface calls

RECV 136
RECVFROM 139

explicit-mode 2
explicit-mode client

application data format 30
call sequence 30
data format 30
data translation 30
network byte order 30

explicit-mode server
application data 37
call sequence 37
I/O PCB 37
PL/I programming 37
TIM 37
transaction-initiation message 37

EZACIC04, call interface, EBCDIC to ASCII translation 188
EZACIC05, call interface, ASCII to EBCDIC translation 189
EZACIC06 15
EZACIC06, call interface, bit-mask translation 190
EZACIC08, HOSTENT structure interpreter utility 192
EZACIC09, RES structure interpreter utility 194
EZACIC14, call interface, EBCDIC to ASCII translation 197
EZACIC15, call interface, ASCII to EBCDIC translation 198
EZASOKET

Assembly language call format 53

312 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

EZASOKET (continued)
COBOL language call format 53
PL/I language call format 53

F
FCNTL (call) 66
FLAGS parameter on call socket interface

on RECV 137
on RECVFROM 140
on RECVMSG 144
on SEND 154
on SENDMSG 158
on SENDTO 160

FNDELAY flag on call interface, on FCNTL 67

G
GETCLIENTID (call) 76
GETHOSTBYADDR (call) 77
GETHOSTBYNAME (call) 80
GETHOSTID (call) 83
GETHOSTNAME (call) 83
GETIBMOPT (call) 85
GETPEERNAME (call) 91
GETSOCKNAME (call) 93
GETSOCKOPT (call) 95
GIVESOCKET 22
GIVESOCKET (call) 111

H
hlq.PROFILE.TCPIP data set 48
hlq.TCPIP.DATA data set 49
HOSTADDR parameter on call interface, on
GETHOSTBYADDR 78
HOSTENT parameter on call socket interface

on GETHOSTBYADDR 78
on GETHOSTBYNAME 81

HOSTENT structure interpreter parameters, on EZACIC08
193
HOW parameter on call interface, on SHUTDOWN 179

I
I/O Area size 42
I/O PCB in explicit-mode server 38
IBM Software Support Center, contacting xviii
IDENT parameter on call interface, INITAPI call 117
implicit mode 2
implicit-mode

client 30
client call sequence 30
client logic flow 30
complete status message 30
CSM 30
data stream 30
transaction-request message 30
TRM 30

implicit-mode client
application data stream 33
application data, format 33
call sequence 33

implicit-mode client (continued)
data format 33
data translation 33
end-of-message indicator 33
logic flow 33

implicit-mode server
application data 40
Assist module 40
call sequence 40
I/O PCB 40
PL/I programming 40
programming 40

IMS Assist Module 2
IMS error 34
IMS Listener

role of 19
use of IMS message queue 19

IMSLSECX, Listener security exit name 47
IN-BUFFER parameter on call interface, EZACIC05 call 190
INET6_IS_SRCADDR (call) 113
Information APARs xxii
initapi 37, 38
INITAPI(call) 116
INQY 22
Internet, finding z/OS information online xxiv
internets, TCP/IP 3
IOCTL (call) 118
IOV parameter on call socket interface

on READV 135
on WRITEV 186

IOVCNT parameter on call socket interface
on READV 136
on RECVMSG 144
on SENDMSG 158
on WRITEV 187

IP protocol 5
IpAddr 47
ISRT 40
iterative server

defined 8
illustrated 9

K
keyboard 299

L
length of backlog queue 46
LENGTH parameter on call socket interface

on EZACIC04 188
on EZACIC05 190
on EZACIC14 197
on EZACIC15 198

license, patent, and copyright information 303
LISTEN 20
LISTEN (call) 127
Listener call sequence 26
Listener configuration file

LISTENER statement 46
TCPIP statement 46
TRANSACTION statement 46

Listener ReasnCode 47

Index 313

Listener RetnCode 47
Listener startup parameters 46
Listener statement 46
LISTNR 38
little-endian 30
LTERM name 43
LU 6.2 1

M
mainframe

education xxii
MAXACTSKT 25
MAXACTSKT parameter 46
MAXSNO parameter on call interface, INITAPI call 117
MAXSOC parameter on call socket interface

on INITAPI 117
on SELECT 148
on SELECTEX 152

MAXTRANS parameter 46
Message Format Services 1
Message format services (MFS) 25
message queue 19, 20, 22
message queue, use of 25
messages

complete-status message 35
MFS 1
MODE=SNGL 37
MSG parameter on call socket interface

on RECVMSG 143
on SENDMSG 157

multiple connection requests 25

N
NAME parameter on call socket interface

on ACCEPT 56
on BIND 58
on BIND2ADDRSEL 61
on CONNECT 65
on GETHOSTBYNAME 81
on GETHOSTNAME 84
on GETPEERNAME 92
on GETSOCKNAME 94
on INET6_IS_SRCADDR 114
on RECVFROM 140

NAMELEN parameter on call socket interface
on GETHOSTBYNAME 81
on GETHOSTNAME 84

NBYTE parameter on call socket interface
on READ 134
on RECV 138
on RECVFROM 140
on SEND 155
on SENDTO 160
on WRITE 185

network byte order 30

O
OSI 4
OUT-BUFFER parameter on call interface, on EZACIC04 188
OUT-BUFFER parameter on call interface, on EZACIC14 198

OUT-BUFFER parameter on call interface, on EZACIC15 199
output area size 42
Overview 1

P
pending activity 14
pending exception 15
pending read 15
PL/I coding 35
PLIADLI 42
Port 47
port numbers

reserving port numbers 48
PORT parameter 46
ports

compared with sockets 7
reserving port numbers 48

prerequisite information xxii
program variable definitions, call interface

assembler definition 54
COBOL PIC 54
PL/I declare 54
VS COBOL II PIC 54

PROTO parameter on call interface, on SOCKET 181
PURG call 42

Q
QC status code 40, 42
QD status code 40, 42

R
READ 22
READ (call) 133
READV (call) 134
ReasnCode, Listener 47
reason codes 34
RECV (call) 136
RECVFROM (call) 138
RECVMSG (call) 141
REQARG and RETARG parameter on call socket interface

on FCNTL 67
on IOCTL 125

REQSTS 33
request-status message 33
Request-status message 29
requirements for IMS TCP/IP 16
RETARG parameter on call interface, on IOCTL 127
RETCODE parameter on call socket interface

on ACCEPT 57
on BIND 59
on BIND2ADDRSEL 62
on CLOSE 63
on CONNECT 66
on EZACIC06 191
on FCNTL 67
on GETCLIENTID 77
on GETHOSTBYADDR 78
on GETHOSTBYNAME 81
on GETHOSTID 83
on GETHOSTNAME 84

314 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

RETCODE parameter on call socket interface (continued)
on GETIBMOPT 87
on GETPEERNAME 93
on GETSOCKNAME 95
on GETSOCKOPT 111
on GIVESOCKET 113
on INET6_IS_SRCADDR 115
on INITAPI 118
on IOCTL 127
on LISTEN 129
on READ 134
on READV 136
on RECV 138
on RECVFROM 141
on RECVMSG 145
on SELECT 149
on SELECTEX 153
on SEND 155
on SENDMSG 159
on SENDTO 161
on SETSOCKOPT 178
on SHUTDOWN 179
on SOCKET 181
on TAKESOCKET 183
on WRITE 185
on WRITEV 187

RETCODE parameter on macro socket interface
on FCNTL 69, 76

RetnCode, Listener 47
return codes

call interface 54
return codes, I/O PCB

bb 43
EA 43
EB 43
EC 43
QC 43
QD 43
ZZ 43

RFC (request for comments)
accessing online xxiv

ROLB call 43
RRETMSK parameter on call interface, on SELECT 148
RSM 29
RSM reason codes 34
RSMId 33
RSMLen 33
RSMRetCod 33
RSMRsnCod 33
RSMRsv 33
RSNDMSK parameter on call interface, on SELECT 148

S
S, defines socket descriptor on macro interface

on FCNTL 68, 70, 71, 89
S, defines socket descriptor on socket interface

on ACCEPT 56
on BIND 58
on BIND2ADDRSEL 61
on CLOSE 63
on CONNECT 65
on FCNTL 67
on GETPEERNAME 92

S, defines socket descriptor on socket interface (continued)
on GETSOCKNAME 94
on GETSOCKOPT 110
on GIVESOCKET 112
on IOCTL 119
on LISTEN 128
on READ 134
on READV 135
on RECV 137
on RECVFROM 140
on RECVMSG 143
on SEND 154
on SENDMSG 157
on SENDTO 160
on SETSOCKOPT 177
on SHUTDOWN 179
on WRITE 185
on WRITEV 186

sample programs
call interface

CBLOCK, PL/I 211
client, PL/I 203
server, PL/I 200

security exit 20
security exit reason codes 34
security exit, data passed by Listener 47
security exit, Listener 47
security exit, return codes 47
SELECT (call) 145
select mask 14
SELECTEX (call) 149
SEND (call) 153
SENDMSG (call) 155
SENDTO (call) 159
server call sequence, explicit-mode 37
server programming, logic flow 37
server, defined 29
server, explicit mode

see explicit mode server 37
SETSOCKOPT (call) 161
shortcut keys 299
SHUTDOWN (call) 178
SNA 1
SNA protocols

compared with SNA 3
compared with TCP/IP 3

SOCKET (call) 179
Socket interface 2
sockets

compared with ports 7
introduction 5

Sockets 1
Sockets Extended API 5
SOCRECV parameter on call interface, TAKESOCKET call 182
SOCTYPE parameter on call interface, on SOCKET 180
softcopy information xxii
SUBTASK parameter on call interface, INITAPI call 117
summary of changes xxvii
SYNC 22
syntax diagram, how to read xix

T
takesocket 22, 37, 38

Index 315

TAKESOCKET (call) 182
TCP protocol 4
TCP/IP

online information xxiv
protocol specifications 279

TCP/IP for MVS, modifying data sets
modifying data sets 48

TCP/IP protocols 4
TCP/IP Services 16
TCPIP statement 46
Technotes xxii
TELNET 1
TERMAPI (call) 183
TIM 22, 38
TIMDataType 38
TIMEOUT parameter on call interface, on SELECT 148
TIMEOUT parameter on call socket interface

on SELECTEX 152
TIMId 38
TIMLen 38
TIMListTaskID 37
TIMLstAddrSpc 37, 38
TIMLstTaskID 38
TIMRsv 38
TIMSktDesc 37, 38
TIMSrvAddrSpc 37, 38
TIMSrvTaskID 37, 38
TIMTCPAddrSpc 37, 38
TN3270 1
trademark information 306
TRANCODE 19, 20
Transaction code 19
transaction name, IMS 47
transaction not defined 34
transaction request message 20
TRANSACTION statement 47
transaction unavailable 34
transaction verification 47
Transaction-initiation message 38
transaction-request message 33
Transaction-request message 29
TransNam 47
TRM 20, 29, 33
TRM bad format 34
TRMId 33
TRMlen 33
TRMRsv 33
TRMTrnCod 33
TRMUsrDat 33

U
UDP protocol 4
updates, database commit 22
use of HOSTENT structure interpreter, EZACIC08 192
Userdata 47
utility programs

EZACIC04 188
EZACIC05 189
EZACIC06 190
EZACIC08 192
EZACIC14 197
EZACIC15 198

V
verification, transaction 47
VTAM 1
VTAM, online information xxiv

W
WRETMSK parameter on call interface, on SELECT 148
WRITE (call) 184
write() 22, 25
WRITEV (call) 185
WSNDMSK parameter on call interface, on SELECT 148

Z
z/OS Basic Skills Information Center xxii
z/OS, documentation library listing 307
ZZ status code 42

316 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

Communicating your comments to IBM

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page 317.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Documentation function
If your comment or question is about the IBMDocumentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The title and order name of the document, and the version of z/OS Communications Server
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2000, 2021 317

https://www.ibm.com/developerworks/rfe/
https://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

318 z/OS Communications Server: z/OS V2R5.0 Communications Server: IP IMS Sockets Guide

IBM®

Product Number: 5650-ZOS

SC27-3653-50

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	How to contact IBM service

	Conventions and terminology that are used in this information
	How to read a syntax diagram
	Prerequisite and related information

	Summary of changes for IP IMS Sockets Guide
	Changes made in z/OS Communications Server Version 2 Release 5
	Changes made in z/OS Communications Server Version 2 Release 4
	Changes made in z/OS Communications Server Version 2 Release 3

	Chapter 1. Using TCP/IP in the IMS environment
	The role of IMS TCP/IP
	IMS TCP/IP feature components
	The IMS Listener
	The IMS Assist module
	The MVS TCP/IP socket application programming interface (Sockets Extended)

	Chapter 2. IMS TCP/IP
	Using IMS with SNA or TCP/IP
	TCP/IP internets
	Mainframe interactive processing
	Client/server processing
	TCP, UDP, and IP
	The socket API

	Programming with sockets
	Socket types
	Addressing TCP/IP hosts
	Address families
	Socket addresses
	IP addresses
	Ports
	Domain names
	Network byte order

	A typical client/server program flow chart
	Concurrent and iterative servers

	The basic socket calls
	Server TCP/IP calls
	Server SOCKET call
	Server BIND call
	Server LISTEN call
	Server ACCEPT call
	Server GIVESOCKET and TAKESOCKET calls
	Server READ and WRITE calls

	Client TCP/IP calls
	Client SOCKET call
	Client CONNECT call
	Client Read/Write calls — the conversation
	Client CLOSE call

	Other socket calls
	The SELECT call
	IOCTL and FCNTL calls
	GIVESOCKET and TAKESOCKET calls
	Summary of passing the socket process

	What you need to run IMS TCP/IP
	A summary of what IMS TCP/IP provides

	Chapter 3. Principles of operation of the Listener and the Assist module
	Overview of the Listener and the Assist module
	The role of the IMS Listener
	The role of the IMS Assist module
	Pros and cons for the use of the IMS Assist module

	Client/server logic flow
	How the connection is established
	How the server exchanges data with the client
	Explicit-mode transactions
	Implicit-mode transactions

	How the IMS Listener manages multiple connection requests
	Use of the IMS message queue
	Input messages
	Output messages

	Call sequence for the IMS Listener
	Application design considerations
	Programs that are not started by the IMS Listener
	When the client is an IMS MPP
	Abend processing
	True abends
	Pseudo abends

	Implicit-mode support for ROLB processing

	Restrictions for operation of the Listener and the Assist module

	Chapter 4. How to write an IMS TCP/IP client program
	General client program logic flow
	Explicit-mode client program logic flow
	Explicit-mode client call sequence
	Explicit-mode application data
	Format
	Data translation
	Network byte order
	End-of-message indicator

	Implicit-mode client logic flow
	Implicit-mode client call sequence
	Implicit-mode application data stream
	Client-to-server data stream
	Server-to-client data stream

	Implicit-mode application data
	Format
	Data translation
	End-of-message segment

	IMS TCP/IP message segment formats
	Transaction-request message segment (client to Listener)
	Request-status message segment
	Request-status message reason codes

	Complete-status message segment
	End-of-message segment (EOM)

	PL/I coding

	Chapter 5. How to write an IMS TCP/IP server program
	General server program logic flow
	Explicit-mode server program logic flow
	Explicit-mode call sequence
	Explicit-mode application data
	Format
	EBCDIC and ASCII data translation

	Transaction-initiation message segment
	Program design considerations
	I/O PCB explicit-mode server
	Status codes

	Explicit-mode server PL/I programming considerations

	Implicit-mode server program logic flow
	Implicit-mode server call sequence
	Implicit-mode application data
	Format
	Data translation
	End-of-message segment

	Programming to the Assist module interface
	Implicit-mode server PL/I programming considerations
	Implicit-mode server C language programming considerations
	I/O PCB implicit-mode server
	Status codes

	Chapter 6. How to customize and operate the IMS Listener
	How to start the IMS Listener
	How to stop the IMS Listener
	The IMS Listener configuration file
	TCPIP statement
	LISTENER statement
	TRANSACTION statement

	The IMS Listener security exit
	TCP/IP services definitions
	The hlq.PROFILE.TCPIP data set
	The hlq.TCPIP.DATA data set

	Chapter 7. CALL instruction application programming interface
	CALL instruction API environmental restrictions and programming requirements
	CALL instruction API output register information
	CALL instruction API compatibility considerations
	CALL instruction application programming interface (API)
	Understanding COBOL, Assembler, and PL/I call formats
	COBOL language call format
	Assembly language call format
	PL/I language call format

	Converting parameter descriptions
	Diagnosing problems in applications using the CALL instruction API
	CALL instruction API error messages and return codes
	Code CALL instructions
	ACCEPT
	Parameter values set by the application
	Parameter values returned to the application

	BIND
	Parameter values set by the application
	Parameter values returned to the application

	BIND2ADDRSEL
	Parameter values set by the application
	Parameter values returned to the application

	CLOSE
	Parameter values set by the application
	Parameter values returned to the application

	CONNECT
	Stream sockets
	UDP sockets
	Parameter values set by the application
	Parameter values returned to the application

	FCNTL
	Parameter values set by the application
	Parameter values returned to the application

	FREEADDRINFO
	Parameter values set by the application
	Parameter values returned to the application

	GETADDRINFO
	Parameter values set by the application

	GETCLIENTID
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYADDR
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTID
	Parameter values set by the application

	GETHOSTNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETIBMOPT
	Parameter values set by the application
	Parameter values returned to the application

	GETNAMEINFO
	Parameter values set by the application

	GETPEERNAME
	Parameter values set by the application
	Parameter Values Returned to the Application

	GETSOCKNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETSOCKOPT
	Parameter values set by the application
	Parameter values returned to the application

	GIVESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	INET6_IS_SRCADDR
	Parameter values set by the application
	Parameter values returned to the application

	INITAPI
	Parameter values set by the application
	Parameter values returned to the application

	IOCTL
	Parameter values set by the application
	Parameter values returned to the application

	LISTEN
	Parameter values set by the application
	Parameter values returned to the application

	NTOP
	Parameter values set by the application
	Parameter values returned to the application

	PTON
	Parameter values set by the application
	Parameter values returned to the application

	READ
	Parameter values set by the application
	Parameter values returned to the application

	READV
	Parameter values set by the application
	Parameter values returned to the application

	RECV
	Parameter values set by the application
	Parameter values returned to the application

	RECVFROM
	Parameter values set by the application
	Parameter values returned to the application

	RECVMSG
	Parameter values set by the application
	Parameter values returned to the application

	SELECT
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned to the application

	SELECTEX
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned to the application

	SEND
	Parameter values set by the application
	Parameter values returned to the application

	SENDMSG
	Parameter values set by the application
	Parameter values returned to the application

	SENDTO
	Parameter values set by the application
	Parameter values returned to the application

	SETSOCKOPT
	Parameter values set by the application
	Parameter values returned to the application

	SHUTDOWN
	Parameter values set by the application
	Parameter values returned to the application

	SOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TAKESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TERMAPI
	Parameter values set by the application

	WRITE
	Parameter values set by the application
	Parameter values returned to the application

	WRITEV
	Parameter values set by the application
	Parameters returned by the application

	Using data translation programs for socket call interface
	Assembly language utility programs call format
	Data translation
	Bit-string processing
	EZACIC04
	EZACIC05
	EZACIC06
	EZACIC08
	EZACIC09
	EZACIC14
	EZACIC15

	Call interface sample programs
	Sample code for IPv4 server program
	Sample program for IPv4 client program
	Sample code for IPv6 server program
	Sample program for IPv6 client program
	Common variables used in PL/I sample programs
	Common variables used in COBOL sample programs
	COBOL call interface sample IPv6 server program
	COBOL call interface sample IPv6 client program

	Chapter 8. IMS Listener samples
	IMS TCP/IP control statements
	JCL for starting a message processing region
	JCL for linking the IMS Listener
	EZAIMSCZ JCLIN
	EZAIMSPL JCLIN

	Listener IMS definitions
	PSB definition
	Application definition

	Sample program explicit-mode
	Sample explicit-mode program flow
	Sample explicit-mode client program (C language)
	Sample explicit-mode server program (Assembly language)

	Sample program implicit-mode
	Sample implicit-mode program flow
	Sample implicit-mode client program (C language)
	Sample implicit-mode server program (Assembly language)

	Sample program - IMS MPP client
	Sample IMS MPP client program flow
	Sample client program for non-IMS server
	Sample server program for IMS MPP client
	WTO output from sample program

	Appendix A. Return codes
	Sockets return codes (ERRNOs)

	Appendix B. Related protocol specifications
	Appendix C. Accessibility
	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Policy for unsupported hardware
	Trademarks

	Bibliography
	Communicating your comments to IBM
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

